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ABSTRACT
We explore a set of hypothesis on user behavior that are po-
tentially at the origin of the (Mean) Average Precision (AP)
metric. This allows us to propose a more realistic version
of AP where users click non-deterministically on relevant doc-
uments and where the number of relevant documents in the
collection needs not be known in advance. We then depart
from the assumption that a document is either relevant or
irrelevant and we use instead relevance judgment similar to
editorial labels used for Discounted Cumulated Gain (DCG).
We assume that clicked documents provide users with a cer-
tain level of “utility” and that a user ends a search when she
gathered enough utility. Based on the query logs of a com-
mercial search engine we show how to evaluate the utility
associated with a label from the record of past user inter-
actions with the search engine and we show how the two
different user models can be evaluated based on their ability
to predict accurately future clicks. Finally, based on these
user models, we propose a measure that captures the relative
quality of two rankings.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval

General Terms
Theory, Experimentation

Keywords
Click-through Data, User Behavior, Search Engines, Statis-
tical Model, Metrics

Introduction
An accurate method to quantify the quality of a document
ranking is a fundamental requisite in the design of search en-
gines. Ranking metrics intervene at different development
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stages: A prognostic metric is used to train a ranking func-
tion and to select the best one among a set of candidates.
Once the function has been submitted to users, diagnostic

metrics evaluate how users react to the changes brought by
the new function.

Problem Description. Suppose reliable editors examined
a set of documents returned in answer to a query and pro-
vided us, for each of them, with a label that describes its
relevance on a five grades scale (in decreasing order of rel-
evance): “PERFECT”, “EXCELLENT”, “GOOD”, “FAIR”
and “BAD” or P, E, G, F and B for short. As long as the
user scans the ranking sequentially, i.e. from the top of the
list to the bottom, one document at a time, it is clear that
the best ranking is obtained by ordering the documents in
decreasing order of their labels.

It is nevertheless not enough to know the ideal ranking.
In a typical scenario, a new ranking function is designed to
operate on a set of documents and query features. To com-
pare this new function to a previous one or to evaluate it
with respect to the optimal ranking, a random set of queries
is chosen and the documents appearing in the rankings of
both functions are manually labeled by editors. This gives
rise to two sequences of labels for each query in the eval-
uation set. To compare these sequences, we have to work
at two levels: Individual Query Level: Given the two se-
quences of ordered labels produced by two search engines
in answer to a given query, which is more likely to satisfy
user needs? Ranking Function Level: Supposing we know
how to compare two rankings for a given query, how do we
extend the results on individual queries to a set of queries?
The second problem arises because when averaging over the
results of several queries, it is not enough to know whether
a query ranking is better than the other, it is also necessary
to know by how much.

Contribution. We agree with Robertson [5] that “If we can
interpret a measure (. . . ) in terms of an explicit user model
(. . . ), this can only improve our understanding of what ex-
actly the measure is measuring”. To illustrate the necessity
of a user model, consider the case where a first ranking func-
tion produces the sequence BBPBB, while another function
produces FFFBB. Provided users scan the list sequentially,
if users stop their search after the second position in the
ranking, then the second ranking is clearly better. This is
not obviously true, and may even be false, if most of them
scan at least three positions.

Resorting to user modeling also helps us break out the
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“chicken and egg” problem [1] we face when comparing two
different metrics: Deciding which metric is best calls for a
third “meta” metric. Because various “meta” metrics are
likely to co-exist, a meta metric for the meta metrics is nec-
essary, etc. User models on the other hand can be compared
based on their predictive ability. If one model predicts more
accurately future user interactions with a search engine, then
the metric derived from the first user model is arguably more
reliable. This doesn’t completely solve the problem though,
as different metrics can be derived from a same user model.

This work first concentrates on describing a possible user
model for an important and widely used metrics: Average
Precision (AP, Section 1). This exercise will help us iden-
tify the implicit assumptions behind this metric and relate
it quite naturally to other metrics found in the Literature.
We will design the user model to be a fully generative sta-
tistical model based on explicit assumptions. This way it
is possible to evaluate the model parameters based on past
data (Section 1.5) and to evaluate the accuracy of the model
on a test set. In Section 2, we propose an extension of AP to
multi-graded relevance judgments and derive a new metric
that compare two rankings based on the proportion of users
that are better off with one ranking than with the other.

1. PROBABILISTIC AVERAGE PRECISION
The AP [6] metric can be associated to a particular set of

hypothesis on the user behavior. This in turn defines a user
model the parameters of which can be estimated from data.
We will see that other metrics like pSkip [7], the Average
Search Length and the Reciprocal Rank all share the same
AP user model.

We first introduce some notations. Because we suppose
that all documents are judged, we can understand a ranking
as a sequence of labels ℓr, r = 1, . . . , R where r indexes the
position in the ranking. In the case of AP documents are
either relevant (denoted by ℓ+), or not relevant (ℓ−).

We often use the notation ℓ1:R to represent the whole
ranking up to position R. We also introduce here the binary
variable Er, called the examination, that indicates whether
a particular rank r is examined by the user. The subscript r
is dropped when there is no ambiguity. By examining a po-
sition, we mean evaluating the snippet in order to decide
whether the corresponding document is promising or not.
Finally, the binary variable Cr indicates whether a document
was clicked or not. We suppose that if a document is clicked,
then its position has been previously examined (There are
no“accidental”clicks). On the other hand, if it is not clicked,
we ignore if it was is examined or not.

In both our user models, we assume that a user is browsing
sequentially a list, and that the user stops when satisfied.
We define three different sets of boolean variables: Sr is
true when the user is satisfied exactly at rank r, Cr is true
when the user clicked the result at rank r, and Er is true
when the user examined the document at rank r. Note that
the user is satisfied at one rank only, and hence boolean
variable Sr can only be true for one rank r, if any: If Sr is
true, then Sr′ is false for any rank r′ different from r.

In order to keep notations compact, we use the following
shorthands. First, for any random variable X, x+ and x−

are equivalent to “X is true” and “X is false”, respectively.
We use lowercase x as a short-hand for X = x, and denote
δX=x the indicator value which is 1 when the event X = x
is true, and 0 otherwise.

Another handy shorthand is used when we deal with a
series of variables: A set of variables Xr for r between 1
and R is represented as X1:R. Similarly Xa:b is the set
Xa, Xa+1, . . . , Xb. This can be combined with the previous
notations: x+

a:b is a short-hand for x+
a , x+

a+1, . . . , x
+
b .

1.1 Average Precision
The AP metric is defined as the average of the precisions

computed at the relevant document positions:

AP =
1

T

∞
X

r=1

precision at r × relevance at r (1)

where T is the number of documents relevant to the query
at hand and “relevance at r” is 1 if the document is relevant
and 0 otherwise. In practice, the sum is often truncated to
a small number of terms.

1.2 User Model
To relate this measure to a user model, we first observe

that the“precision at r”in Eq. 1 can be interpreted as a mea-
sure of how “easy” or “fast” r relevant documents are found
by a user browsing the result list sequentially for exactly r
relevant documents. If we further assume that 1/T users
need exactly r relevant documents and that a user always
clicks upon examining a relevant document, the expected
precision coincide with AP, as discussed by Robertson [5]. In
order to formalize these intuitions, we define the following
user model:

User Model 1 (Probabilistic AP). 1

1. The user decides the number n of relevant documents

she needs to meet her information need.

2. She browses the result list sequentially.

3. She clicks on a document she examines with a proba-

bility that depends on the relevance of the document.

4. She ends her search as soon as she clicked on n relevant

documents.

Because different users need a different number of docu-
ments, n corresponds to discrete random variable that we
denote by N . We see that this model assumes that a user
ends her search only if she is satisfied and that a search must
end on a relevant document.

Several user models can be at the origin of the AP. For
example, Moffat & Zobel [4] propose the next interpreta-
tion: ”Every time a relevant document is encountered, the
user pauses, asks “Over the documents I have seen so far,
on average how satisfied am I” and writes a number on a
piece of paper. Finally, when the user has examined every
document in the collection –because this is the only way to
be sure that all of the relevant ones have been seen– the
user computes the average of the values they have written.”
This scenario stresses how unrealistic is the direct use the
total number T of relevant documents as a component of an
evaluation measure.

1pAP for short.
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1.3 Prognostic Metric
Central to the metric is the evaluation of the rank at where

the information need is met, which is described by Pr(s+
r ).

According to the model assumption, the user browses the
result list sequentially and abandons her search as soon as
she meets her information need, so s+

r also implies that all
documents are examined up to rank r and none is exam-
ined after rank r: e+

1:r and e−r+1:R. It also implies that the

document at rank r was clicked, i.e. c+
r .

A prognostic metric attempts to evaluate the quality of a
ranking before it is presented to users. As a consequence, we
need to evaluate Pr(s+

r ) by marginalizing over all possible
user interactions for all values of N (Pr(s+

r |n) = 0. If ℓr =
ℓ− then Pr(s+

r |n) = 0). Otherwise:

Pr(s+
r |n; ℓ+)

1
=

X

e1:R

X

c1:R

Pr(s+
r , e1:R, c1:R|n; ℓ1:R)

| {z }

(a)

2
=

X

c1:r−1

Pr(s+
r , e+

1:r, e
−
r+1:R, c1:r−1, c

+
r , c−r+1:R|n; ℓ1:R)

3
=

X

c1:r−1

Pr(e+
1:r, e

−
r+1:R|s

+
r )

| {z }

=1

Pr(c+
r |e

+
r ; ℓr)

| {z }

(b)

Pr(c−r+1:R|e
−
r+1:R)

| {z }

=1

Pr(c1:r−1|e
+
1:r−1; ℓ1:r−1)

| {z }

(c)

Pr(s+
r |c1:r−1, c

+
r , n; ℓ1:r−1)

| {z }

(d)

(2)

The first equality holds by simple marginalization of the
joint distribution over all the variables but Sr. Equality 2
holds because (a) is zero unless

1. e+
1:r and e−r+1:R because s+

r entails that the user ex-
amined all positions up to r before ending the search
at r,

2. c+
r because a user ends a search only if she clicks on a

relevant document and
3. c−r+1:R because there are no clicks on documents not

examined.

Factor (d) is deterministic in Equality 3: It is zero unless

1. the document at position r is relevant
2. the user clicked at position r, an event that occurs with

probability (b) if the document is relevant.
3. the user clicked on exactly n − 1 relevant documents

prior to position r, a condition that is realized with a
probability that obeys to (c)

The model states that the probability to click does not
depend on the rank, provided we know whether the user
examined the position, and the label of the document at
this rank. Hence, Pr(c+

r |e
+
r ; ℓr) is a constant independent

of the rank; We denote it µ+. We observe that if there are
tr−1 relevant documents among the first r−1 positions, there

are
“

n−1
tr−1

”

possible configurations2, each of them having a

probability

µn−1
+ (1 − µ+)tr−1−n+1

2if n − 1 > tr−1 then there is no possible configuration, i.e.

the value
“

n−1
tr−1

”

is defined as zero.

We have3:

Pr(s+
r |n; ℓ) = δ

ℓ
+
r

µ+

“

n−1
tr−1

”

µn−1
+ (1 − µ+)tr−1−n+1

= δ
ℓ
+
r

“

n−1
tr−1

”

µn
+(1 − µ+)tr−1−n+1 (3)

where the indicator δ
ℓ
+
r

is 1 if ℓr = ℓ+ and 0 otherwise.

The first prognostic measure we define is the probabilistic
interpretation of AP, that is the expected precision at the
rank where the search is abandoned. In terms of our user
model, this is:

pAPpro = E(precision) =
X

n

Pr(n)

R
X

r=1

n

r
Pr(s+

r |n)

Using Eq. 3, this can be expressed as:

pAPpro =
X

n

Pr(n)
R

X

r=1

δ
ℓ
+
r

n

r

“

n−1
tr−1

”

µn
+(1 − µ+)tr−1−n+1

Finally, if we set µ+ = 1, Pr(n) = T−1 for n = 1, . . . , T
and R = ∞ we have:

pAPpro|µ+=1,Pr(n)=T−1 =
X

n

1

T

∞
X

r=1

δ
ℓ
+
r

δtr=n
n

r

This is the original AP as claimed above.
Various other prognostic metrics can be easily constructed

based on the pAP user model once Pr(s+
r |N = n) defined in

Eq. 3 is known. Maybe the most obvious are the Expected

Search Length defined as

ESLpro =
X

r

rPr(s+
r ) =

X

n

Pr(n)
X

r

rPr(s+
r |n) (4)

or the Expected Reciprocal Rank :

ERRpro =
X

r

1

r
Pr(s+

r ) =
X

n

Pr(n)
X

r

1

r
Pr(s+

r |n) (5)

A definition closer to the original Expected Search Length

from Cooper would consider the expected number of irrele-
vant documents before retrieving n relevant documents:

X

n

Pr(n)
X

r

r − n

r
Pr(s+

r |n) (6)

All these metrics are based on the knowledge of one central
quantity, namely the probability Pr(s+

r |n) of the user being
satisfied knowing she was looking for n relevant documents.
This can be understood as different ways of weighting it for
the rank. Unfortunately, although they are correlated these
metrics do not necessarily lead to the same conclusion when
used to compare two ranking functions.

1.4 Diagnostic Metric
Diagnostic metrics are meant to evaluate a ranking after it

was presented to users and interactions have been collected.
In the case of our user model, they are based on updating
the probability Pr(sr; ℓ1:R) with the click information, i.e.
to estimate Pr(sr|c1:R; ℓ1:R).

Suppose we observe a sequence of clicks and skips c1:R on
a ranking defined by ℓ1:R. Given c1:R, we know the num-
ber nb of relevant documents clicked and the position b of

3This is the negative binomial distribution provided docu-
ment at r is relevant.

533



the last click4. According to the user model, either the user
was satisfied at rank b (s+

b ) or not satisfied at all (s−1:R).
Hence, Pr(s−1:R|c1:R) is simply 1 − Pr(s+

b |c1:R) and all we
need is to estimate Pr(s+

b |c1:R). If the clicked document is
not relevant, this probability is 0. Otherwise, we know that
if the user was satisfied at rank b, then she was looking for
nb relevant documents, and we have:

Pr(s+
b |c1:R) = Pr(N = nb|c1:R)

=
Pr(c1:R|nb)Pr(nb)

Pr(c1:R|nb)Pr(nb) + Pr(N > nb)Pr(c1:R|N > nb)

=
Pr(nb)

Pr(nb) + Pr(N > nb)
QR

r=b+1 Pr(c−r |e+
r ; ℓr)

Having defined the probabilities Pr(s+
r |c1:R, ℓ1:R), we can

compute the diagnostic counterparts of Eqs. 4, 5 and 6 or any
other suitable metric of interest. In particular, if we adopt
the convention that the precision is null if the information
need is not met (i.e. s−1:R), we can revise Eq. 4 and compute
the expectation of precision knowing the user clicks c1:R:

pAPdia = E(precision|c1:R) = δ
ℓ
+

b

Pr(s+
b |c1:R)

nb

b

Moreover, if we suppose that all clicked documents are
relevant and disregard the case where the user doesn’t meet
her information need, the “diagnostic” version of pAP coin-
cide with pSkip [7] model with the pSkip metric being the
empirical estimate of µ+. Given the close relation of pSkip
with the diagnostic versions of Average Search Length (ASL)
and Reciprocal Rank (see [7]), we deduce that the pAP user
model also generalizes the underlying user model of those
metrics.

1.5 Parameters Estimation
In order to estimate the model parameters, we want to

maximize the likelihood of the data. To define the latter, it
is necessary to compute the likelihood of a session which is
defined by the clicks c1:R, i.e. to compute L = Pr(c1:R; ℓ1:R).

Suppose that the last click of a session is at position b
and that the user clicked on nb relevant documents. In that
case, we know that the user was either satisfied at rank b or
continued his search beyond rank R. The likelihood of the
first case is

Pr(s+
b , c1:R; ℓ1:R)

= Pr(s+
b , c1:b; ℓ1:b) = Pr(nb)

b
Y

r=1

Pr(cr|e
+
r ; ℓr)

while in the second case, the user is not satisfied by nb rel-
evant documents and:

Pr(s−b , c1:R; ℓ1:R) = Pr(N > nb)
R

Y

r=1

Pr(cr|e
+
r ; ℓr)

Because we don’t observe Sb, we marginalize it to obtain

L = Pr(nb)

b
Y

r=1

Pr(cr|e
+
r ; ℓr) + Pr(N > nb)

R
Y

r=1

Pr(cr|e
+
r ; ℓr)

A session without clicks is never satisfying for the user
and its likelihood is obtained from the previous Equation by
observing that Pr(N = 0) = 0 and Pr(N > 0) = 1.

4In the case there was no click, the model implies s−1:R.

To evaluate the probabilities Pr(N = n), µ+ = Pr(c+|e+; ℓ+)
and µ− = Pr(c+|e+; ℓ−) we multiply the likelihood of a set
of the observed sessions and maximize the resulting product
using standard techniques.

1.6 Numerical Experiments
We collected from the logs of the Yahoo! search engine a

set of approximately 33,000 sessions with at least one click
for which we have a PEGFB editorial judgment for each of
the top 10 urls, together with a record of which urls have
been clicked. Each record in our data set has the following
form: A sequence of 10 labels ℓ1:10 followed by a sequence
of 10 True or False tokens that indicates the states of C1:10.

We divided the data in 10 random subsets and used each
of these subsets (i.e. 10% of the original set) as the data
we maximize the likelihood on. The data is labelled on the
PEGFB scale and we need to decide how to adapt these
5 levels to the 2 levels –relevant and irrelevant– suitable
for pAP. We explore successively all the possible mapping
by considering first that only PERFECT documents are rel-
evant (P row in Table 1), then that EXCELLENT and PER-
FECT documents are relevant (E case in Table 1), etc.

We observe that the estimates based on 10% of the data
are fairly stable. If we consider all the documents with la-
bel “GOOD” or above as relevant, the probability of a click
on a relevant document is 39% as opposed to only 19% on a
irrelevant document. We also observe that 83% of users re-
quire 1 relevant document to satisfy their information need,
while 12% need two and only 5% need more.

We would like to know which of the mappings from PEGFB
labels to relevant or irrelevant is best aligned with the ac-
tual user behavior. The pAP model is a generative model
and can be used to predict user behavior, i.e. which docu-
ments are clicked given a specific ranking; We can therefore
compare the accuracy of these predictions on the test sets.
We use the perplexity –a common measure of the “surprise”
of a model when presented with a new observation. Given
a proposed probability model q of the true distribution p,
one may evaluate q by asking how well it predicts a separate
test sample of size D drawn from p. The perplexity of the
model q is defined as

2−
P

D

i=1
1
D

log2 q(xi) (7)

Better approximations q of the unknown distribution p will
tend to assign higher probabilities to the events observed in
the test set. Thus, they have lower perplexity, i.e. they are
“less surprised” by the test sample.

In the context of user behaviors, the perplexity is a mono-
tonically increasing function of the joint probability of the
sessions in the test set. Analytically, this probability is iden-
tical to the likelihood of the test set, but instead of maxi-
mizing it with respect to the parameters, the latter are held
fixed at the values that maximize the likelihood on the train-
ing set.

All sessions in both the training and test sets contains
R = 10 results so that by setting D to 10 times the number
of sessions in Eq. 7, the perplexity is loosely5 interpretable
as the number of trials per correct prediction of a binary
event: The click or skip of a document. The lower the per-
plexity, the better the model: A perplexity of 1 corresponds

5This interpretation is not strictly correct because the clicks
and skips in a session are not independent. The evaluation
itself continues however to be valid.
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Table 1: Median Click Probabilities and Required
Number of Documents Distribution. The propor-
tion of users requiring more than 4 documents is
not significantly larger than zero.

Pr(c+|s+; ℓ) Pr(N = n)
µ− µ+ n = 1 n = 2 n = 3 n = 4

B - 0.42 0.89 0.11 0.00 0.00
F 0.17 0.44 0.88 0.12 0.00 0.00
G 0.19 0.39 0.83 0.12 0.03 0.02
E 0.14 0.33 0.90 0.07 0.02 0.01
P 0.12 0.68 0.99 0.01 0.00 0.00

to perfect predictions, while a perplexity of 2 corresponds to
randomly predicting a click or a skip.

We have plotted the perplexity resulting from the 10 data
splits for the 5 possible mappings in Figure 3. Experiments
show that considering as relevant the document GOOD or
better lead to the best model. To fix ideas, we also plotted
the perplexity of a simple CTR (Click-Through Rate) model
that predicts a click according to the CTR of the document
label. For example, if 100 BAD labels appear in 50 sessions
and are clicked 20 times, then the probability of a click on
a BAD is estimated as 20/100 = 20%. This model doesn’t
take into account the document position in the ranking.

2. MULTI-GRADED MAP
The pAP model states that if a user needs n relevant docu-

ments, she will stop her search when she finds her nth docu-
ment and the documents beyond in the ranking have no im-
portance to her. Although the assumption that a user stops
her search as soon as her information need is met seems ad-
equate, it is harder to believe that a pre-defined number of
relevant documents will satisfy this need. It is also hard
to believe that she actually knows this number. In the re-
maining of this work we propose a model where a certain
amount of utility is associated to clicked documents, and a
user stops her search when she gathered enough utility to
meet her information need6. We relax the assumption that
a document can either be relevant or not (ℓ ∈ {ℓ+, ℓ−}) and
allow multi-grade labels as for example DCG does. The user
model is specified as follows:

User Model 2 (Satisfying Information Need). 7

1. The user examines the page results sequentially,

2. She clicks on a document she examines with a probabil-

ity Pr(c+|e+; ℓ) that depends on the document label ℓ.

3. If she clicks on a document with label ℓ, she acquires

the quantity U(ℓ) of utility.

4. When she has gathered enough utility to satisfy her

information need, she ends the search.

We assume that utilities are additive: Each clicked docu-
ment with label ℓ contributes an amount U(ℓ) of utility to be
added to the total utility the user already gathered. This is
not completely realistic: If two documents provide the same
content, the utility of consulting both should be the same

6This model is reminiscent of [2].
7SIN for short.

as the utility of consulting one. We ignore this limitation in
this work. As long as document relevances are judged inde-
pendently from one another by editorial judges, there is no
solution to this problem. Note that AP and DCG also suffers
from this shortcoming.

We adopt the same notations as defined for the pAP user
model (Section 1). The total utility associated with a set of
clicks c1:r can be written

Pr

1 Urδcr
where δcr

is 1 if the user
has clicked at rank r and 0 otherwise.

The larger the total utility the user acquires, the higher
the probability that her information need is met. We capture
the probabilistic relation between the total amount of utility
– a continuous, positive variable – and the binary variable
that states whether the user information need is met using
the sigmoid function σ(u) = (1 + exp(−u0 − u))−1 where
u0 is a suitable intercept. The effect of this function is to
squash any value on the real axis to the interval ]0, 1[ suitable
for probabilities. With these assumptions, we are able to
establish the relation between utility and information need:

Pr(s+
r |s

−
1:r−1, c1:r; ℓ1:r) = δcr

× σ(
r

X

s=1

Uscs) (8)

where, as in Section 1, Sr is true if the user was satisfied
at rank r. As the user clicks on more documents, the total
utility increases, increasing the probability that the informa-
tion need is met. Other parameterization are possible, but
the logistic function presents some clear advantages: It is
simple and it is monotonically increasing with its argument,
the total amount of utility.

2.1 SIN Probabilities of Satisfaction

Prognostic Satisfaction. As for AP, we are interested in
the rank where the user is satisfied Pr(s1:R; ℓ1:R), which can
be estimated by marginalizing the joint distribution of the
model given by:

Pr(s1:R, e1:R, c1:R; ℓ1:R) =

R
Y

r=1

Pr(cr|er; ℓr)Pr(er|s1:r−1)Pr(sr|c1:r , s1:r−1; ℓ1:r) (9)

where the first component is estimated from the training
data, the second is deterministic and the third is given by
Eq. 8. This marginalization does not present any particular
analytical difficulty, but we cannot expect the same kind of
simplification as for pAP.

This process is illustrated in Figure 1 for the two first
ranks: Assuming that the user always examines rank 1, she
either clicks on the first document and follows the left branch
–an event that happens with probability Pr(c+

1 |e
+
1 ; ℓ1)– or

she skips it and follows the right path. If she chooses the
first solution, she decides with probability σ(U1) that the
document at position 1 is sufficient to fulfill her information
need and she ends her search. Otherwise she continues, an
event that happens with probability 1−σ(U1). Right before
she reaches rank 2 she is in one of three states:

• She clicked on the document 1 and decided that her
information need is satisfied. The search ends. (node 5
in Figure 1),

• She clicked on the document but decided her informa-
tion need was not met (left most branch, node 3),
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Figure 1: SIN decision process.

• She didn’t click on the document and her information
need is not met (right branch, node 8).

Each end node of rank 1 (nodes 3, 5 and 8) is reached with a
probability equal to the product of the probabilities on the
path from node 1 (reported in Figure 1 together with the yes

/ no decisions that determine the path). If the user didn’t
end at node 5, the process is repeated at node 3 and 88.

Diagnostic Satisfaction. In order to evaluate the diagnos-
tic counterpart of the metrics, we need to estimate the prob-
abilities of satisfaction after the user interactions have been
observed. The development is similar to that of Section 1.5,
where we distinguish two cases (the user was satisfied or not
at the rank b of the last click). In the first case (s+

b ), we
have

Pr(s+
b , c1:R; ℓ1:R) = Pr(s+

b , s−1:b−1, e
+
1:b, e

−
b+1:R, c1:R; ℓ1:R)

=

b
Y

r=1

Pr(cr|e
+
r ; ℓr)Pr(sr|c1:b, s

−
1:r−1; ℓ1:r) (10)

where we used Eq. 9 and the fact that (a) a user always
examine the rank if she has not been satisfied before, i.e.
Pr(e+

r |s
−
1:r−1) = 1 for any rank less or equal than b, (b) a

user does not examine any rank after being satisfied, i.e.
Pr(e−r |s+

b ) = 1 for any rank after b and (c) she never clicks
on non examined ranks, i.e. Pr(c−r |e−r ) = 1 for any rank
after b. Similarly, if the user is not satisfied, we have:

Pr(s−1:R, c1:R; ℓ1:R) = Pr(s−1:R, e+
1:R, c1:R; ℓ1:R)

=
R

Y

r=1

Pr(cr|e
+
r ; ℓr)Pr(s−r |c1:r , s−1:r−1; ℓ1:r) (11)

and finally, combining Eqs. 10 and 11 :

Pr(s+
b |c1:R; ℓ1:R) =

Pr(s+
b , c1:R; ℓ1:R)

Pr(s−b , c1:R; ℓ1:R) + Pr(s+
b , c1:R; ℓ1:R)

=
cb × σ(

P

1:R Urcr)

σ(
P

1:R Urcr) + (1 − σ(
P

1:R Urcr))
QR

r=b+1 Pr(c−r |e+
r ; ℓr)

where we used Eq. 8.

8 A python script to compute p(s+
r ; ℓ1:r) is publicly available

at: http://sinmetric.sourceforge.net/
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Figure 2: Left boxplot: Probability of click given
the document label. Right boxplot: Utility of a
document with the given label. The value of the
intercept u0 is also reported.

2.2 Model Estimation and Evaluation
The likelihood L of a session correspond to the probability

Pr(c1:R; ℓ1:R) of a sequence of clicks, which can be obtained
by adding Eqs. 10 and 11:

Pr(c1:R; ℓ1:R) =
b

Y

r=1

Pr(cr|e
+
r ; ℓr)Pr(sr|c1:r , s−1:r−1; ℓ1:r)

+

R
Y

r=1

Pr(cr|e
+
r ; ℓr)Pr(s−r |c1:r, s

−
1:r−1; ℓ1:r) (12)

As before, we maximize the likelihood of 10 subsets of our
dataset. The results are reported in Figure 2 and Table 2.
In our opinion these are very interesting results. First, click
probabilities –with the exception of the label BAD– and util-
ities increase according to the label ordering, which corre-
sponds to intuition but is not enforced by the model. The
BAD documents have, when compared to FAIR documents,
a higher probability of click but a lower utility. This is in
agreement with what we expect of spam documents. Perfect
documents –identified as the target of a navigational query–
have a particularly high probability of being clicked and, if
they are the first click, the user is predicted to stop with a
probability σ(U(PERFECT)) = 95%.

We computed the perplexity of the SIN model to compare
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Table 2: Probability of click and utility according
to the document label. The third column reports
the probability of ending the search after clicking
on one document with the corresponding label. The
median of the intercept u0 is -2.71.

Label ℓ Pr(c+|e+; ℓ) U(ℓ) σ(U(ℓ))
BAD 0.36 2.32 0.40
FAIR 0.30 2.81 0.52
GOOD 0.38 3.54 0.70
EXCELLENT 0.42 3.66 0.72
PERFECT 0.76 5.68 0.95

pAP pAP pAP pAPpAP

F G E PB

SIN

1
.2

5
1
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0
1
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1
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CTR

Figure 3: Perplexity of the different user models:
Boxplots of 10 × cross-validation.

it with the performance of the pAP user model. The results
are shown in Figure 3 where we see that the SIN significantly
outperforms pAP.

2.3 Loss & Benefit Metric
We can define the same set of prognostic and diagnostic

metrics for the SIN as for pAP (Eqs. 4, 5 and 6), but this
time the probability Pr(s+

r ) is estimated based on the SIN

user model.
Which of these metrics best reflects user satisfaction is not

clear and might even be system dependent. These metrics
can be understood as different ways of averaging the values
of Pr(s+

r ) over the positions r and are out of necessity to
a certain extend arbitrary. The new approach we propose
here doesn’t avoid completely this caveat, but it attempts to
remain as neutral as possible by avoiding the averaging over
positions. As a basis for comparison between two rankings A
and B, we propose to estimate the expected number of users
who meet their information need earlier in one ranking than
in the other. We denote SA (resp. SB) the set of satisfaction
variables for ranking A (resp. B). The fact that a user meets
her information need sooner in ranking A than in ranking B
is denoted A ≻ B and happens with probability:

Pr(A ≻ B) =
R

X

r=1

Pr(s+
A;r, s

−
B;1:r) =

R
X

r=1

Pr(s+
A;r)Pr(s−B;1:r)

where we supposed that the user behavior on the two rank-
ings were independent. The benefit B of ranking A –or the
loss if negative– is defined as the proportion of users that
are better off with ranking A than ranking B9:

B(A, B) = Pr(A ≻ B) − Pr(B ≻ A)

9The same script of footnote 8 also computes the prognostic
and the diagnostic benefit.
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Figure 4: The loss vs. the nDCG for the ranking in
the entire dataset. The histograms reflect the loss

and nDCG values distribution (Top and Right, respec-
tively).

To compare two ranking functions, the benefit is averaged
over queries.

We argue that this new metric is more “neutral” because
no weighted average of Pr(s+

r ) is computed for A or B. In-
stead the distributions of SA and SB are compared point-
wise. The benefit also has the advantage of being straight-
forward to interpret.

2.4 Numerical Experiments
When comparing more than two systems, it is convenient

to have an absolute value characterizing each of them sepa-
rately. This is easily achieved by computing the benefit with
respect to the ideal ranking obtained by ordering the docu-
ments according to their utilities. In Figure 4 we report the
benefit with respect to the ideal ranking (actually a loss)
as a function of the normalized DCG (nDCG) with logarithmic
discounting factors. As expected, the larger the nDCG, the
lower the loss. Although correlated, these two values are
sufficiently different to lead to a different choice of ranking
function.

The same Figure 4 distinguishes a set of ranking on the
left for which the loss and nDCG lead to opposite conclusions:
These rankings are very far from ideal in terms of the loss

(values range from -.3 to -.5), while the nDCG is moderately
below average with values in the .7 to .8 range. We isolate
the ranking identified by a filled circle in Figure 4, extreme
left to get more insight. It corresponds to the query “car
rentals” with ranking GGEGGGPEGP. We report the different
statistics associated with this ranking in Table 3. We first
observe that the loss is stable from rank 2 because the vast
majority of users (72.3 + 20.2 = 92.5% of users) presented
with the ideal ranking meet their information need before
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Table 3: Absolute gain for the query ”car rentals”.
DCG discounts are logarithmic and scores are 10, 5,
3, 0.5, 0. The second column reports the docu-
ment labels of the actual A and the ideal B rank-
ings. The next two columns report the proportion
of users meeting their information need at the dif-
ferent ranks for of rankings A and B, respectively.

rank label Pr(SA = r) Pr(SB = r) benefit DCG nDCG

1 G/P 0.265 0.723 -0.458 3.000 0.300
2 G/P 0.207 0.202 -0.549 4.893 0.300
3 E/E 0.176 0.025 -0.549 7.393 0.393
4 G/E 0.107 0.017 -0.550 8.685 0.414
5 G/G 0.076 0.010 -0.550 9.845 0.445
6 G/G 0.054 0.007 -0.550 10.914 0.471
7 P/G 0.085 0.005 -0.549 14.247 0.589
8 E/G 0.011 0.003 -0.549 15.825 0.630
9 G/G 0.006 0.002 -0.549 16.728 0.642

10 P/G 0.009 0.002 -0.549 19.618 0.729

rank 3 according to the SIN model. The loss is then es-
sentially determined by the proportion of users who meet
their information need on the actual ranking on the first
two positions. In our data collection, a PERFECT docu-
ment is the target page of a navigational query. The SIN

model is consistent with this definition: It predicts with a
high probability that the user will stop her search after see-
ing the target document. The nDCG on the other hand keeps
increasing steadily up to rank 10 because the contribution
of a given position to the final DCG value is independent of
the documents presented at other positions.

Discussion
We have shown that a reasonable reconstruction of the user
decision process can be deduced from the definition of AP.
This is important because this help us question the implicit
hypothesis behind this metric and propose the improvements
at the origin of the pAP user model: We supposed first that
users click on a document with a probability that depends
on whether it is relevant or not, as opposed to AP where,
at least implicitly, users always click on relevant documents.
Like [4], we also reject the idea that the total number of
relevant documents in the collection needs to be known to
evaluate the system. Instead we suppose that the number of
documents required by the user follows a distribution that
can be estimated from past user interactions.

In the SIN model we further question the pAP hypothesis:
Rather than supposing that users need a pre-defined num-
ber of relevant documents, we argued that they search as
long as their information need is not satisfied. Making the
assumption that documents with a higher level of relevance
provide more “utility” to the user and contribute more to
her satisfaction, we designed the SIN user model to predict
user stops based on the total amount of utility she gathered.
This hypothesis is more appealing intuitively and is able to
handle naturally multi-graded relevance levels.

Unlike metrics, user models can be compared quantita-
tively because they have the ability to predict user interac-
tions, i.e. which documents a user will click or skip when
presented with a new ranking. By evaluating the prediction
accuracy, we can determine which model is more adapted,
i.e. represents better the user behavior, to a given search
engine, a given market or a given set of users. In particular,

we have shown that for our dataset the pAP model based on
considering GOOD and better documents as relevant leads
to the best prediction accuracy. We also showed that the SIN
model outperforms the pAP model. This matched intuition
because it is able to handle multi-graded levels of relevance.

Most metrics are based on the knowledge of a probability
distribution on the rank at which the user meet her infor-
mation need. This distribution can be evaluated prior to
exposing the ranking to users by marginalizing over all the
possible interactions with the result list. Metrics based on
this prior distribution are qualified as prognostic metrics and
can be used to train a ranking function or to chose among
different candidates. The same probability distribution can
be estimated after the new ranking function has been ex-
posed to users and enough interactions have been recorded,
giving rise the diagnostic counterpart of the metrics.

We have seen that a same user model can give rise to
different metrics. Choosing one in particular is to a certain
extent arbitrary and in this context it is important to make
the weaker assumptions possible. This led us to propose
that out of two rankings, the best is the one that leads the
user to fulfill her information need at an earlier rank. Based
on this definition, it is possible to estimate the benefit of a
new ranking as the number of users it will favor.

The models we have proposed are still rather crude and
many important aspects have been ignored. Both the pAP

and the SIN models make the assumption that the user ex-
amines the ranking until she meets her information need.
This is clearly unrealistic: Users do abandon search out of
despair, reformulate their query, etc. The correction of this
assumption is the topic of future work. Other aspects like
document diversity, user diversity, query classes have also
been ignored, etc. In this respect, the field of Interactive

Information Retrieval [3] is certainly an important source of
inspiration.
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