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On the Study of Transformers for Query Suggestion
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When conducting a search task, users may find it difficult to articulate their need, even more so when the

task is complex. To help them complete their search, search engine usually provide query suggestions. A

good query suggestion system requires to model user behavior during the search session. In this article,

we study multiple Transformer architectures applied to the query suggestion task and compare them with

recurrent neural network (RNN)-based models. We experiment Transformer models with different tokenizers,

with different Encoders (large pretrained models or fully trained ones), and with two kinds of architectures

(flat or hierarchic). We study the performance and the behaviors of these various models, and observe that

Transformer-based models outperform RNN-based ones. We show that while the hierarchical architectures

exhibit very good performances for query suggestion, the flat models are more suitable for complex and

long search tasks. Finally, we investigate the flat models behavior and demonstrate that they indeed learn to

recover the hierarchy of a search session.
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1 INTRODUCTION

To explore the space of potentially relevant documents, users interact with search engines through
queries. This process can be improved, since when looking for information, users may have diffi-
culties to express their needs at first sight, and hence may have to reformulate the queries multiple
times to find the documents that satisfy their needs. This process is particularly exacerbated when
the user is accomplishing a complex search task.
Among the different ways to help users in exploring the information space, modern search

engines provide a list of query suggestions, which help users by either following their current
search direction—e.g., by refining the current query—or by switching to a different aspect of a
search task [49]. Another use of query suggestions is to help the search engines by providing
ways to diversify the presented information [59].
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There are two ways to approach the task of query suggestions. Either in a direct way, seeking
directly to improve the user experience. This involves searching for the most suitable queries so
that the user accesses the most relevant information as quickly as possible [6]. Such an approach
requires a mean to assess what constitutes a relevant suggestion, or data on whether or not sugges-
tions are relevant. The second approach consists in modeling the average user [1, 2, 9, 20, 60, 65].
The goal is to predict the next query based on the current search session—where the data are
nowadays abundant. The hypothesis is that suggesting such queries from sessions usually helps
users in their search. In the absence of a public dataset allowing to train and evaluate models on
the first type of approach, this latter type of approach is usually pursued. This is the scope of this
article.
To suggest useful queries, most models build upon web search logs, where the actions of a user

(queries, clicks, and timestamps) are recorded. User sessions are then extracted by segmenting
the web search log. The first query suggestion models exploited the query co-occurrence graph
extracted from user sessions [29, 30]: if a query is often followed by another one, then the latter
is a good potential reformulation. However, co-occurrence-based models suffer from data sparsity,
for instance when named entities are mentioned, and lack of coverage for rare or unseen queries.
Moreover, these models are difficult to adapt when using a wider context than the last submitted
query [20].

More recently, recurrent neural network (RNN)-based methods have been proposed to ex-
ploit longer dependencies between queries [1, 2, 20, 60, 65]. RNNs do so by keeping track of the
user in a representation/vector space which depends on all the previous actions performed by the
user. Such models have improved the quality of suggestions by capturing a broader context, but
are limited by the relatively short span of interaction that RNNs are able to capture.
Beyond query suggestion, working with representation-based models such as neural networks

are particularly interesting, since the learned representations can be useful for models exploiting
user sessions, such as in interactive IR models. If a model is able to correctly generate a query, then
it means that it has captured (at least partially) the user intent. Developing neural models able to
predict with high accuracy the next queries of a user are thus important for building interactive
and discussion-based retrieval systems.
Among all the models exploited in NLP and IR, most [40, 52, 56, 61, 63, 66] have benefited from

the recently proposed Transformers architecture [63]. Transformer networks, such as Bidirec-
tional Encoder Representations from Transformers (BertBert [21], capture long-
range dependencies between terms by refining each token representation based on its context
before handling the task at hand. They are thus a particularly interesting architecture for query
suggestion since query terms are often repeated throughout a session, and their interaction needs
to be captured, to build a faithful representation of the current user state. Recently, Garg et al.
[23] presented a Hierarchical Transformer for Query Suggestion, with a two-level encoder. Their
model outperforms the hierarchical recurrent based models [20, 60], and shows that recurrence is
not essential for the query suggestion task. In opposition to this type of hierarchical transformers,
we refer in this article to the classical transformer networks as flat transformers.

However, the authors of [23] do not provide a full analysis of whether the hierarchical archi-
tecture is important, especially for complex user sessions that are particularly interesting in the
context of interactive IR. In this work, we contribute to the study of transformers for the query
suggestion task—and more generally, for models able to analyze user sessions:

— We reproduce RNN-based models experiments [20, 60] and extend them by segmenting
queries using subword units, which allow transformers to avoid the problem of out-of-
vocabulary tokens.
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—We also reproduce the Hierarchical Transformer architecture [23], with word and sub-word
units, and compare it with flat Transformers.

— We compare the flat Transformers with two pre-trained transformers: Bert, Bidirec-
tional and Auto-Regressive Transformer (Bart), and T5, finetuned for our task.
We also integrate these pre-trained models to the Hierarchical Transformer.

The analysis is structured into three research questions that we detail below. First, we are inter-
ested in the performance of transformers from a global point of view.

Q1. How well the various presented transformers generate queries suggestions compared to the
usual baselines?

When a user performs a complex search, it is more difficult to capture the intent of the user.
However, such sessions are of particular interest for nowadays IR research, and in particular for
interactive IR. We thus pay a particular attention to the robustness of the different models on
sessions corresponding to so-called “complex” search tasks. This raises the question of whether all
transformers have the same ability to handle long, complex or noisy sessions, or whether, on the
contrary, the results are impacted differently depending on the pre-training or the architecture of
the transformer.

Q2. Which model is the most robust?
(a) to complex sessions
(b) to noisy sessions
(c) to long sessions

Following the analyzes conducted to answerQ2., we conclude that flatten pre-trained transformers
are more resilient to noise, length, and complexity of sessions. We are investigating why these
models are more robust, which leads us to our final research question:

Q3. How does the flat transformer generate queries?
(a) On which context’s queries does it focus its attention?
(b) On which context’s tokens does it focus its attention?
(c) How does it choose the next token to generate?

The analyzes and answers to these questions aim at better understanding the behavior of various
Transformer architectures for user modeling.

2 RELATEDWORK

A large number of works have focused on the task of query suggestion [50], and related tasks
such as query auto-completion [46], based on search logs to extract query co-occurrences [29, 30].
From a given single query formulated by a user, the goal is to identify related queries from logs, and
to suggest reformulations based on what follows in the retrieved sessions, assuming subsequent
queries as refinements of former ones [55]. These works rely on several methods, such as using
term co-occurrence [29], using users click information [45], using word-level representation [8],
capturing higher order collocation in query-document sub-graphs [7], clustering queries from logs
[55], or defining hierarchies of related search tasks and sub-tasks [26, 44]. Some methods finally
prevent query sparsity via reformulations using NLP techniques [50]. For instance, Jain et al. [31]
propose an end-to-end system to generate synthetic suggestions, based on query-level operations
and information collected from available text resources. Broccolo et al. [9] propose to alleviate
the sparsity issue by creating a knowledge base from query logs. The database is filled with train
log queries to make synthetic documents. The idea, is then to define a function which measures
the similarity of a virtual document with this base and a new session. Each token of the session is
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taken into account independently to calculate this similarity, which allows unseen queries to be
treated. The title from the closest virtual documents are the suggestions.
However, such log-based methods suffer from data sparsity and are not effective for rare or un-

seen queries [60]. In addition, these approaches are usually context-agnostic, focusing onmatching
candidates with a single query. When the query comes in a session with some previous attempts
for finding relevant information, it is crucial to leverage such context for capturing the user in-
tent and understanding its reformulation behavior. Note the approach in [12], which alleviates the
problem by relating the user sessions to paths in a concept tree, but also suffers from data sparsity
issues.
Instead of trying to predict directly a query, it is possible to learn how to transform it. Most

approaches operate at a high level, with term retention, addition and removal as the possible refor-
mulation actions [38, 58]. Levine et al. [38] consider these actions as feedback from the user —e.g.,
a term that is retained during the whole session should be considered as central for the user intent.
Depending on the previous sequence of users’ actions, these methods seek to predict the next ac-
tion. These methods are interesting because they model the user behavior in a session. However,
they fail at capturing the semantic of words, which is essential.
To cope with limitations of log-based and action-based methods, some works propose to define

probabilistic models for next query prediction [27]. Due to their ability for processing sequences
of variable size, RNNs have been widely used for text modeling and generation tasks, with an
encoder that processes an input sequence by updating a representation in Rn , and a decoder that
generates the target sequence from the last computed representation. Some works have adapted
these ideas to a sequence of queries [20, 33, 60]. HRED [60] proposes to use two encoders: a query-
level encoder, which encodes each query of the user session independently, and a session-level
encoder, which deals with the sequence of query representations. Instead of using a hierarchical
representation, ACG [20] relies on attention mechanism giving a different importance to words
and queries in the computed representation. Another improvement of ACG is to deal with Out-

Of-Vocabulary (OOV) words through the use of a copy mechanism, which allows the model to
pick tokens from the past user queries rather than generating them using a fixed-size vocabulary.
Other RNN-based approaches have also been recently proposed, such as [65], which leverages

user clicks and document representations to specify the user intent [1, 2], or [33] which integrates
click-through data into homomorphic term embeddings to capture semantic reformulations. Some
works have explored the use of long-term search history of users [14], using a RNN-based hier-
archical architecture, to score query suggestions. In this work, as a starting point, we restrict to
queries in sessions as input data, but other sources of information can be added to such models.
In parallel, the Transformers architecture, a recent and effective alternative to RNNs models in-

troduced in [63], was successfully applied to a large set of NLP applications, such as Constituency
Parsing and Automatic Translation [63], Semantic Role Labeling [61], Machine Reading Compre-
hension [40], and Abstractive Text Summarization [56].

The Transformer architecture has also been used several times in the field of Information
Retrieval. Nogueira et al. [48] and Han et al. [25] applied transformers to infer the queries relevant
to a document. Nogueira et al. [48] used the pre-trained transformer BERT, and showed that
expending the document with the predicted query improves the ad hoc retrieval results, while
Han et al. [25] presented a more complex seq2seq architecture: the encoder included a Graph
Convolutional Network and an RNN; and the decoder is a transformer. Several works focused
on transformers applied to conversational search [3, 19, 68], in particular Yu et al. [68] used a
pre-trained model for conversational query rewriting, and showed that even with very limited
training data it could achieve very good performances. Finally, transformers have been used for
ad hoc retrieval [17, 43, 52, 66], the latest works showing that the transformer-based architectures
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are outperforming state-of-the-art adhoc models. Dai et al. [17] analyzed the attention weights of
BERT to explain its performance in retrieval, but restricted their study to some selected examples.
For the query suggestion task, Garg et al. [23] presented a Hierarchical Transformer that out-

performs RNN-based model, and thus showed that recurrence was not crucial for this task. Their
model is composed of two encoders, namely a token-level and a query-level one. The first one
gives a contextualized representation of each token that depends on the other tokens of the query,
while the second one outputs a contextualized representation of each query depending on the
other queries of the session. Our work extends this article by providing a thorough analysis of the
behavior of (hierarchical) transformer models, as well as experimenting with various pre-trained
transformer models.

3 TRANSFORMERS FOR QUERIES SUGGESTION

In this section, we first present the transformer network architecture before describing how we
use it for query suggestion.

3.1 The Transformer Architecture

The transformer architecture was introduced in [63]. It is composed of parametric functions that
successively refine the representation of sequences, both for the encoder and the decoder. In our
case, the encoder is used to represent the session, and the decoder to generate the next query.
Each layer of the encoder or the decoder transforms a sequence x composed of n vectors

x1, . . . ,xn into a sequence y1, . . . ,yn of the same length, through an attention over a context se-
quence c composed of n vectors c1, . . . , cn . Each time, the central mechanism is to use an attention
mechanism—other operations are conducted to ensure a stable and efficient learning process, and
are detailed in [63], but here we focus on the attention mechanism since it is important for our
analysis (Section 5).

Attention heads and transformations. At each layer of the encoder or the decoder, the transfor-
mation function T is based on the output of a series of H attention-based functions Ah (called
heads). For each head Ah , the attention mechanism relies on:

— keys kh (c j ) ∈ Rdk computed for each element of the context c j
— values vh (c j ) ∈ Rdk computed for each c j
— queries qh (xi ) ∈ Rdk computed for each input xi ∈ Rd , with d = H × dk .

Each input is decomposed in H parts of the same dimension dk , i.e., xi = (x1i ⊕ · · · ⊕ xHi ) where
⊕ is a vector concatenation operation. Each xhi is modified by a linear combination of the values
vh (c j ) based on weights derived from the match between the query qh (xi ) with the different keys
kh (c j ). More formally, we define a head Ah as:

Ahi (x , c ) = xhi +
m∑
j=1

αhi jvh (c j )︸������︷︷������︸
βhi j (c j )

with αhi j ∝ exp

(
1√
dk

qh (xi ) · kh (c j )
)
, (1)

where we can see that the attention mechanism only modifies the input if both the attention αhi j
and the value vh (c j ) are not null. Each key, query, and value function is unique to a given layer
and head, but is the same for each input vector. The output of the layer is given by T (x , c ) =
(T1 (x , c ), . . . ,Tn (x , c )) with

yi = Ti (x , c ) = f (A1i (x , c ) ⊕ · · · ⊕ AHi (x , c )),

where f is a normalization followed optionally by a feed-forward layer.
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The full transformation performed at layer l for a part • of the model is denoted as T •
l
in the

following. The parameters of the corresponding heads (queries, keys, and values) are specific to
each T •

l
, where • is either the encoder self-attention e → e, the decoder self-attention d → d, or

the decoder to encoder attention e→ d (see below).

Encoding. When encoding, i.e., processing the input sequence s (0) of token embeddings

s (0)1 , . . . , s
(0)
n , each layer transforms a sequence s (l−1) into s (l ) using the transformationT e→e

l
(s (l−1) ,

s (l−1) ) based on the headsAe→e
hi

(e → e for “attention from the encoder on the encoder”). Since the
context is simply the input here, this is called a self -attention mechanism—i.e., each input item,
representation is transformed by looking at the whole input sequence. This is repeated Le times

until obtaining the final representation of the encoded sequence s (Le ) which has the same length as
the original input, but where each representation is contextualized depending on the other tokens
of the input.

Decoding. The generating process (called decoding) is based on the same principle—with a small
twist since we take into account not only the already generated sequence, but also the input. To
compute the probability of generating a new token w given the sequence w0,w1, . . . ,wn′ , whose

embeddings are t (0)0 , . . . , t
(0)
n′ , the decoder uses two attentions: one self-attentionA

d→d (decoder to

decoder attention) followed by an attention on the encoded sequence Ad→e (decoder to encoder
attention). The representation at layer l is based on the representation at layer l − 1 and on the
final encoded sequence:

d (l ) = T d→e
l

[
T d→d
l

(
t (l−1), t (l−1)

)
, s (Le )

]
.

The process is repeated Ld times, giving rise to the representations t (Ld )1 , . . . , t (Ld )n′ . The distribution
over the next token w (whose embedding is t ) is then given by a parametric function applied to
the representation of the last previously generated output tn′ (which is why there is a token w0

corresponding to “[START]”—in order to compute the first generated token):

p (w |w1, . . . ,wn′ ) = д(t ; t
(Ld )
n′ ). (2)

3.2 Pre-Trained Transformers

Transformers models have a large number of parameters which make them costly to train. In addi-
tion to that, the attention mechanism is computationally expensive, particularly for long sequence:
it has a complexity of O (n2) with respect with the sequence length [64]. Thus they are complex
to train. Fortunately, multiple pre-trained models trained on large datasets have been released
recently [21, 39, 53, 67]. We compare the results of transformers trained from scratch, to three
pre-trained models that we finetune, namely BERT [21], BART [39], and T5 [54].

Bert. The BERT [21] has been trained on a large dataset, the BooksCorpus [70] on two tasks,
namely predicting some masked tokens of the input, and on predicting whether one sentence
follows another. It is a state-of-the-art model, which is used for different tasks. BERT corresponds
to the encoder part only—we have to train a decoder for our specific task.

Bart. Bidirectional and Auto-Regressive Transformer is made of an encoder and a decoder. It
is trained on the same data than BERT, but on multiple tasks: token masking, token detection, text
infilling, sentence permutation, and document rotation. Because it has a decoder and it is trained
on these tasks, the authors claim that BART is better than BERT for text generation. They also
released fine-tuned versions of BART for other tasks. We use the weights of the model fine-tuned
on CNN/DM, a news summarization dataset, because as a text generation task it was the closest
task to the query suggestion task.
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T5. T5 [54] is also a transformer with an encoder and a decoder as described in [14] with minor
architecture modifications in the attention. T5 is trained simultaneously on multiple tasks, that’s
why the author called it a “unified” framework. The task is specified by adding the task name as
a prefix in the original input. The network is the same for all inputs, while usually the mutli-task
learning model have a specific network for each task [41].

Note that many pre-trained transformers have been released in recent years (BERT [21], BART
[39], GPT-2 [53], T5 [54], XML [16], RoBERTa [42], and the famous GPT-3 [10]—whose parameters
have not been made public), so it is necessary to choose those we want to experiment with. We
choose: (1) BERT because it is the most used transformer; (2) BART because it has an encoder-
decoder architecture with very good performance in generation, and especially in summarization,
and finally; and (3) T5 because it is one of the last transformers that have been published.

3.3 Using Transformer Networks forQuery Suggestion

3.3.1 Problem Setting. Let us consider a session S = (Q1, . . . ,Q |S | ) as a sequence of |S | queries,
where every Qi = (wi,1, . . . ,wi, |Qi | ) is a sequence of |Qi | words. The goal of query suggestion is
to suggest the most relevant query for the user intent represented by the session. However, no
perfect ground truth can be easily established for such problems: defining the perfect query for
a given specific under defined need, given a sequence of past queries, is an intractable problem,
which requires to consider very diverse (in nature and complexity) search tasks, depends on the
user state, the IR system and the available information in the targeted collection. Following other
works on model-based query suggestion, we thus focus on predicting the next question within an
observed session.
We suppose that our dataset is composed of pairs (S, Q̌ ) where Q̌ is the query following a

sequence of queries S . Our aim is thus to find the parameters θ that maximize the log probabil-
ity of observing the dataset:

L (S ;θ ) =
∑
(S,Q̌ )

logpθ (Q̌ |S ) =
∑
(S,Q̌ )

|Q̌ |∑
t=1

logpθ (wt |Q1, . . . ,Q |S | ), (3)

where (w1, . . . ,w |Q̌ | ) are the token of the query Q̌ .We describe belowhowwe use the transformer—

we tried to build different architectures based on the transformer, but the simplest one worked the
best throughout all our pilot experiments. The model is illustrated by Figure 1.

Input. For a session, the input of the transformer is simply the concatenation of all the words of
all the queries separated by a token [SEP], i.e., the [SEP] is used to mark the beginning of a new
query in the session:

S = [[SEP] w1,1 . . .w1, |Q1 |︸�������������︷︷�������������︸
Q1

[SEP] . . . [SEP]w |S |,1 . . .w |S |, |Q |S | |︸�������������������︷︷�������������������︸
Q |S |

[SEP]].

This sequence is then transformed by using the token embeddings added to positional embed-
dings (one per distinct position)—this is how Transformers recover the sequence order [63].

We obtain a contextualized representation for each token of the session with the Encoder E:

E(S ) = (h0, . . . ,hn ), (4)

where n is the number of tokens in the whole session: n =
∑

i |Qi |.
We train models with various encoders E described in the next Sections (from 3.3.2 to 3.3.5). The

decoding part is the same for all, as described in Section 3.1.
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Fig. 1. Flat Transformer for Query Suggestion.

3.3.2 Fully Trained Transformer (TS). The encoder and a decoder and the decoder are fully
trained, they have the architecture described in Section 3.1, with Ld = 6 layers, with H = 12
heads each and a dropout p = 0.1. On the top of the decoder, we use a feedforward network with
a hidden size of 2,048. For the input tokens, we use the same embeddings for the encoder and the
decoder to reduce the number of parameters and to regularize the network [63].

3.3.3 BERT. We use the pre-trained model Bert [21], and extract each hidden layer of the
model. We sum the last layer, with the average and the max of these layers.1 For each token of the
input, we have a contextualized embedding of size 768 given by Bert. For the decoding part, we
use the same transformer decoder and feedforward network as the ones described in 3.3.2. At the
beginning of the training the encoder is frozen and the decoder is trained. We then use a “gradual
unfreezing” of the encoder layers as recommended by [28]: when the loss stabilizes, we unfreeze
the last frozen layer of the encoder, until all the layers are fine-tuned.

3.3.4 BART. The architecture is complete for text generation, it has an encoder and a decoder.
We also use gradual unfreezing to fine-tune the model, but starting from the last layer of the pre-
trained decoder. We compare the results of the complete Bart model fine-tuned for our task, with
the ones of the Bart Encoder followed by a fully trained Transformer Decoder.

3.3.5 T5. T5 is a transformer with a pre-trained encoder and a pre-trained decoder. As we did
for BART, we compare two versions of the model: the encoder-only version Enc_T 5, with a fine-
tuned encoder and a fully trained decoder, and a version for which we fine-tuned the entire T5
model. We use the training protocol described for BART and BERT.

3.4 Hierarchical Transformer forQuery Suggestion

We now describe the hierarchical transformer proposed by [23] (an illustration is given in Figure 2).
It is composed of two levels of encoding: a token-level ET and a query-level one EQ , each following
the same contextualization process as a standard encoder in a transformer model.
First, the token-level Encoder ET produces a contextualized representation ET (Qi ) =

(
w̃i,1 , . . . ,

w̃i,K
)
of each token of a given query Qi . Since queries might have a different length, padding is

1Based on https://github.com/hanxiao/bert-as-service, and our own preliminary experiments.
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Fig. 2. Hierarchical transformer for query suggestion.

used (e.g., a special [blank] token) so that each query is of length K . This representation is then

summarized into a query representation Q̃i using a linear transformation:

Q̃i = ET (Qi )WP . (5)

The transformation matrix is WP ∈ RKd×d where d is the output dimension of each token of the
encoder. In our experiments we use K = 12, which is enough to cater for most of the queries—the
remaining tokens are truncated.

The session-level encoder takes these vectors Q̃i as input to transform them into final query

representations S̃ = (S̃1, . . . , S̃ |S | ) that embed context from neighbor queries, using positional
encoding.

S̃ = EQ
(
Q̃1, . . . , Q̃ |S |

)
, (6)

where |S | is the number of queries in the session.
We then obtain the final representation of a query token by summing its query-wise represen-

tation w̃i, j with the contextualized representation of its corresponding query S̃i :

h̃i, j = w̃i, j + S̃i . (7)

Finally, the decoding part is exactly the same as for other transformer models (Section 3.1).

4 EXPERIMENTS

In this section, we report experimental results comparing the various flat and hierarchical
transformer-based models, as well as other neural network baselines.
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We first describe the datasets, the compared models and the metrics (Sections 4.1–4.3), before
presenting our main results in Section 4.4. In Section 4.5, we pursue our analysis by studying how
the models perform when exposed to noise, by altering the sessions (filtering or concatenating).
In both cases, we show that hierarchy does not help as much as a good pre-training. Finally, in
Section 4.6, we present some queries generated by a selection of models.

4.1 DataSets.

Some datasets allow a fine evaluation of query suggestions, they consist of queries grouped by user
sessions and associatedwith relevant documents. These datasets are: the TREC Session dataset [13]
which contains the names of the tasks and relevant documents associated with the user sessions,
the conversational dataset SCSdata [62] segmented by task and containing the documents read
by the user, and the Webis-SMC-12 dataset [24] which is a subset of AOL for which the sessions
have been manually split and annotated into missions. However, these three datasets contain few
sessions, respectively, 1,300, 1,000, and 2,200 sessions, which is insufficient to train the models we
want to compare. To the best of our knowledge, there is no dataset of sufficient size better suited
to the task of suggesting queries than the two query logs datasets: the real dataset AOL web search
log and the artificial dataset, MS MARCO Conversational Search [47]. In both cases, the queries
are processed by removing all non-alphanumeric characters and lowercasing following [60].
MS MARCO is an artificial dataset, built from real queries. The authors filtered these queries:

they removed navigation, bot, junk, and adult sessions and merged users queries with a nearest
neighbor search based on their embeddings to create artificial sessions. The MS MARCO dataset
is provided in two parts. We use 80% of the first part as the training set, the remaining 20% as the
validation set, and the second part of the dataset as the test set. Each set contains, respectively 540,
267, 135, 066, and 75, 193 sessions.
The AOL dataset consists of 16 million real search log entries from the AOLWeb Search Engine

for 657,426 users. Following [60], we delimit sessions with a 30-minutes timeout for both datasets.
The queries submitted before May 1, 2006, are used as the training set, the remaining four weeks
are split into validation and test sets, as in [60]. After filtering, there are 1, 708, 224 sessions in the
training set, 416, 450 in the test set, and 416, 450 in the validation set. As the real-word AOL dataset
is not filtered, it contains typos and noisy sessions. It is made of 860, 155 unique words, whereas
the artificial dataset MS MARCO has 28, 968. When building a vocabulary same manner as in [60]
(i.e., using the most frequent 90 k words of the training set), 8.9% of the words from the dataset are
not in the vocabulary while all MS MARCO words are included in the selected vocabulary.

4.2 Compared Models.

In our experiments we compare a co-occurence based approach, two RNN-based approaches and
fully trained and fine-tuned transformer models. The co-occurence based approach is the Inverted
Index [9], RNN models are HRED [60], and ACG [20], which we described in Section 2. The fully
trained transformer, hereafter referred as TS, is composed of an encoder and a decoder presented in
Section 3. The hierarchical transformer H_TSwith the two-level encoder is described in Section 3.4.
The pre-trained models that we finetune are Bert [21], Bart [39], and T5 [54].

The two RNN-based models and the fully trained transformers TS and H_TS use a fixed vocabu-
lary composed of words, but Bert, Bart, and T5 employ subword tokenizers (WPT) that segment
the text into n-grams of varying lengths [57]. For instance, the query “Robert Mitchum” is seg-
mented as robert [UNK] with a Word Tokenizer while the WPT returns robert mitch ##um.
Hence, there is no OOV problem (handled with special OOV token) with the WPT and the vocab-
ulary size is kept below a pre-defined threshold (31 K tokens for Bert, 32 K for T5, and 50 K for
BART), which in turns speeds up learning. To analyze the importance of the tokenizer, we consider
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variants of HRED, ACG, TS, and H_TS based on the Bert tokenizer in our experiments, named
HRED-WP, ACG-WP, TS-WP, and H_TS_WP.
To leverage pre-trainedmodels, which is especially important since the number of parameters in

transformer models is high, we use the parameters of Bert [21], Bart [39], and T5 [54] to initialize
the parameters of our models. More precisely, for the flat architecture (TS), the encoder parameters
are either initialized to those of the Bert model, the Bart or t5 encoder. The models are named,
respectively, BERT, Enc_BART, and Enc_T5. Since Bart and T5 are not only an encoder as Bert,
we also consider a version with both encoder and decoder parameters initialized with pre-trained
Bart and T5 parameters, that we refer, respectively, to BART and T5.
For the hierarchical architecture (H_TS), theQuery EncoderET parameters can also be initialized

with those from the Bert, Bart, and T5 encoders, the rest of the architecture remaining trained
from scratch. We refer to such models as H_BERT, H_BART, and H_T5.
For all models involving pre-trained transformers, the training procedure is the same: we use

the “gradual unfreezing” method, as recommended by [28] and described in Section 3.3.3.
Models optimization is performed on the training sets of sessions with the ADAM optimizer

[35]. All hyper-parameters are tuned via grid-search on a validation dataset.

4.3 Metrics

As many other tasks in IR, evaluating the quality of the models is problematic since they can
generate many queries in response to a session—and there is no principled way to evaluate their
quality. In the following, we describe the metrics that were reported in previous works to compare
models, and which try to capture the quality of the system responses.

Perplexity. All compared models generate probability distributions over the sequences. This en-
ables to check how surprised the model is by the target query. However, perplexities of some pairs
of methods cannot be compared because the vocabulary size is different (90 K tokens for models
without WPT, 31 K tokens with WPT, 50 K for BART’s tokenizer, and 32 K for T5). Moreover, for-
mer versions of HRED, ACG, TS, and H_TS can generate OOV words, which strongly biases the
results. Perplexity is not reported for these last methods.

Query suggestion metrics. As a metric to evaluate generated queries compared to the target ones,
we first use the classical metric BLEU [51], which corresponds to the rate of generated n-grams
that are present in the target query. We refer to BLEU-1, BLEU-2, BLEU-3, and BLEU-4 for 1-gram,
2-grams, 3-grams, and 4-grams, respectively. We also calculate the exact match (EM) (equals to
1 if the predicted query is exactly the observed one, 0 otherwise).

As EM can be too harsh, we also use a metric, Simextrema [22], which computes the cosine simi-
larity between the representation of the candidate query with the target one. The representation of
a query q (either target or generated) is a component-wise maximum of the representations of the
words making up the query (we use the GoogleNews embeddings, following [60]). The extrema
vector method has the advantage of taking into account words carrying information, instead of
other common words of the queries
However, this component-wise maximummethodmight excessively degrade the representation

of a query. As an alternative, we propose to compute Simpairwise as the mean value of the maxi-
mum cosine similarity between each term of the target query and all the terms of the generated
one.
Finally, as discussed in Section 3.3, there is no ground truth on what the best queries to suggest

are. For each generation metric, we consider the maximum performance of the top-10 queries
generated by the models. More precisely, for each model, we first generate (through a beam search
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Table 1. Results on the MS MARCO (a) and the AOL DataSet (b)

(a) MS MARCO dataset
II ACG ACG_WP HRED HRED_WP TS TS_WP H_TS H_TS_WP BERT H_BERT Enc_BART BART H_BART Enc_T5 T5 H_T5

EM 0.173 0.044 0.041 0.139 0.129 0.174 0.197 0.164 0.170 0.223 0.182 0.184 0.226 0.183 0.175 0.203 0.121
BLEU 1 0.584 0.435 0.416 0.572 0.555 0.579 0.596 0.574 0.589 0.617 0.597 0.591 0.618 0.592 0.598 0.576 0.565
BLEU 2 0.369 0.200 0.182 0.341 0.320 0.372 0.377 0.363 0.371 0.402 0.378 0.385 0.419 0.383 0.379 0.375 0.335
BLEU 3 0.218 0.092 0.087 0.193 0.176 0.223 0.248 0.218 0.224 0.274 0.234 0.238 0.275 0.236 0.230 0.238 0.174
BLEU 4 0.202 0.073 0.068 0.175 0.161 0.213 0.239 0.201 0.206 0.268 0.217 0.222 0.266 0.221 0.212 0.231 0.149
simextrema 0.835 0.798 0.780 0.828 0.817 0.833 0.840 0.834 0.837 0.846 0.839 0.837 0.848 0.839 0.837 0.837 0.830
simpairwise 0.677 0.579 0.543 0.635 0.616 0.671 0.682 0.665 0.670 0.697 0.677 0.672 0.697 0.678 0.675 0.659 0.661

New Words 0.950 0.138 0.354 0.594 0.604 0.886 0.880 0.902 0.899 0.870 0.902 0.902 0.858 0.911 0.879 0.910 0.895
Repetion Rank 8.618 8.767 9.429 8.974 9.141 6.926 6.689 7.055 7.022 6.424 6.755 6.985 5.586 7.098 7.116 6.913 7.318

(b) AOL dataset
II ACG ACG_WP HRED HRED_WP TS TS_WP H_TS H_TS_WP BERT H_BERT Enc_BART BART H_BART Enc_T5 T5 H_T5

EM 0.018 0.017 0.010 0.029 0.036 0.037 0.048 0.046 0.081 0.061 0.085 0.055 0.119 0.087 0.052 0.082 0.053
BLEU 1 0.438 0.417 0.388 0.409 0.422 0.439 0.454 0.447 0.493 0.460 0.495 0.455 0.552 0.494 0.452 0.519 0.435
BLEU 2 0.148 0.128 0.098 0.122 0.135 0.162 0.178 0.178 0.238 0.194 0.241 0.186 0.316 0.240 0.183 0.275 0.166
BLEU 3 0.067 0.037 0.026 0.052 0.059 0.071 0.089 0.102 0.146 0.110 0.150 0.104 0.231 0.144 0.098 0.192 0.090
BLEU 4 0.033 0.006 0.004 0.018 0.023 0.027 0.040 0.055 0.086 0.063 0.093 0.058 0.174 0.084 0.051 0.148 0.043
simextrema 0.751 0.668 0.687 0.710 0.713 0.729 0.723 0.742 0.762 0.741 0.763 0.739 0.792 0.762 0.731 0.776 0.723
simpairwise 0.484 0.408 0.390 0.404 0.415 0.447 0.457 0.462 0.501 0.466 0.504 0.459 0.558 0.499 0.454 0.537 0.435

New Words 0.996 0.119 0.588 0.679 0.740 0.916 0.941 0.849 0.881 0.927 0.880 0.919 0.682 0.934 0.902 0.593 0.940
Repetion Rank 9.711 7.138 9.128 7.841 7.157 8.683 8.300 6.830 4.970 6.668 4.203 6.132 2.204 3.665 6.203 1.468 6.324

We Report Different Metrics, along with Two Quality Indicators Best Results for a Metric Are Reported with a Bold Font.

Bold values indicates significant gains (p < 0.05) compared to T5.

withK = 20) 10 queries to suggest to the user given the context.2 The reported value for eachmetric
(BLEU, EM, Simextrema , and Simpairwise ) is the maximum score over the 10 different generated
queries. This is usually employed for assessing the performance of a probabilistic model w.r.t. a
single target (see e.g., [37]) and corresponds to a fair evaluation of models that try to find a good
balance between quality and diversity.

4.4 Results

In this section we aim at answering our first question: Q1. How well the various presented

transformers generate queries suggestions compared to the usual baselines?

Tables 1 (generation scores), and 2 (perplexity) report results obtained by all the models. We also
added two further indicators. First, the ratio of newwords (NewWords), calculated by counting the
number of unique words that appear in the suggested query but were not in the past queries of the
session, divided by the count of unique words in this query. Second, the rank of the prediction in
the beam search (Repetition Rank) if the predicted query appears in the context (or 10 if it does not).
We first note the difference between the two datasets. As expected, being synthetic, MS Marco

is a much easier dataset—more restricted vocabulary and more regular sessions, as acknowledged
by the fact that all the metrics are higher for MS Marco.
From a high level point of view, we see that transformers are better performing than the baseline

II and that the RNN-based models, HRED, and ACG. Among transformers, more complex and pre-
trained models perform better, with the flat architecture with a pre-trained encoder and decoder
Bart performing the best. Contrarily to [23], we do not observe a real difference between hierar-
chical and non hierarchical transformer architectures: The main factor of variation is on what task
and dataset the model was pre-trained.
We note that models have different tendencies to copy one of the queries in the session. This is a

standard behavior: 3% of queries for MS MACRO and 6% for AOL are among the previous queries
of the session. So it is not surprising that more powerful models learn to copy—transformer models

2As we want to encourage the models trained with a word tokenizer to generate tokens present in the vocabulary, we

follow [34] and apply a penalty on the “OOV” token in the beam search. To compute the metrics, we ignored the OOV

token that can be generated by HRED or ACG—queries composed only of OOV words are skipped.
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Table 2. Perplexities for Word-Piece
Tokenizer-Based Models

AOL MS MARCO

ACG WP 1 175 242
HRED WP 1 101 111
TS WP 721 56
H_TS WP 486 56
BERT 492 47
H_BERT 473 64

Enc_BART 557 52
H_BART 209 40
BART 173 39

Enc_T5 92 22
H_T5 215 58
T5 37 21

have a tendency to repeat a seen query compared to ACG or HRED (lower Repetition Rank). We
explain this tendency by their ability to retrieve information at arbitrary positions in the input.

Perplexity. We only compare perplexity for models based on the same tokenizer, since otherwise
the problem of evaluating prediction with OOV tokens, or of vocabulary with different sizes makes
comparisons impossible. We observe that the transformers obtain a much better perplexity than
ACG and HRED with WPT. The likelihood of target queries with these last two methods are both
about half the one of the transformer model TS_WP. This shows that transformers better explain
users’ behavior in search sessions. Among transformers, we observe that while the hierarchy is
beneficial on the AOL dataset, it is not the case on the MS MARCO dataset. We will discuss this
behavior in more details later.

Word Piece Tokenizer. Among RNNs, using WPT is sometimes beneficial for HRED but not for
ACG. We explain this because the copy mechanism already allows ACG to produce rare tokens.
This ability appears lowered when using word pieces, as assembling unknown words from smaller
tokens is much more difficult than copying a whole word for such architectures. For HRED, the
Word Piece Tokenizer improves the scores on the AOL dataset, while it degrades them on the MS
MARCO one. This is explained by the fact that for the MS MARCO dataset there is no OOV and
hence using a WPT is not useful anymore.
For Transformers trained from scratch (TS, TS_WP, H_TS, and H_TS_WP), the Word Piece to-

kenizer is always beneficial. It could be due to the use of positional embeddings, that makes the
copy of consecutive tokens easier. Moreover, the use of this tokenizer reduces the vocabulary size.

The pre-trained models. First, BART (flat transformers with a pre-trained encoder and decoder)
outperforms all the models on all metrics. This shows the value of pre-trained models on large
dataset and on generative tasks (summarization). When observing the flat pre-trained models
scores, we note that they outperform the fully trained version: BERT, Enc_BART, BART, Enc_T5,
and T5 are better than TS_WP on the AOL dataset. For the MSMARCO dataset, while BERT and
BART have better scores than TS_WP, Enc_BART, and Enc_T5 are similar to TS_WP. We think
that because the vocabulary used in the MSMARCO dataset is more restricted, and the dataset
more regular, the use of large pre-trained models is less beneficial. While T5 largely outperforms
BERT on the AOL dataset, BERT is much better than T5 on the MSMARCO dataset. The unified
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framework–consisting of training simultaneously the model for various tasks—used to pretrain T5
is useful on a complex dataset, as it probably allows the model to acquire more language knowl-
edge, but it is less efficient on simpler data. Finally, for both datasets, BART performs the best
for all metrics. On the AOL dataset, BART improvement is particularly important on BLEU 3 and
BLEU 4—which are calculated by considering 3-gram and 4-gram sequences. It indicates that when
comparing longer word sequences between target and predictions, BART is the best model, thus
it is better at generating longer queries, i.e., longer queries. We think this is because BART has
been trained on a summarization task, and is therefore better than the other models at generating
comprehensive sequences.
Its scores are also significantly better on the similarity scores simextrema and simpairwise on the

AOL dataset, which means that this is the best model to capture the word semantic.

The Hierarchy. On the AOL dataset, the hierarchical models perform better than their flat ver-
sion: TS vs H_TS, TS_WP vs H_TS_WP, BERT vs H_BERT, and Enc_BART vs H_BART except for
T5 for which Enc_T5 outperforms H_T5. This could be due to the fact that T5 uses relative po-
sitional embeddings, while other models use absolute positional embeddings. H_T5 would have
more difficulties to find the exact position of words within queries. Note that for fair comparison
H_BART and H_T5 are compared to Enc_BART and Enc_T5 rather than BART and T5 because
BART and T5 decoders are pre-trained while H_BART and H_T5 decoders are trained from scratch.
This shows that with a suitable encoder the hierarchy is beneficial for the query suggestion task,
the two-levels encoder allowing to have a more complex representation of the session.
The conclusions are different for the MSMARCO dataset. For the fully trained model TS and

TS_WP, and for BART, the hierarchy does not help significantly, while with BERT and T5, the
hierarchy decreases the results. We explain this because the queries and the sessions of the MS-
MARCO dataset are longer, and the model has difficulty to focus its attention on the important
queries. We discuss the behavior of the hierarchical models on longer and more complex sessions
more in detail below.

4.5 Robustness of (Transformer) Models

We now look more in details in how the models behave regarding different types of sessions to
answer the second question Q2: Which model is the most robust to complex sessions (a), to

noisy sessions (b) and to long sessions (c)? For each type of session, a section is dedicated to
the answer.

(a) Transformers results on complex sessions. Focusing on the real-word dataset AOL, which con-
tains many very short and simple search sessions typical of web search, we were interested in how
transformer models could handle complex sessions. To identify those, we used a simple heuristic: a
complex session (1) consists of at least three queries; (2) contains queries with more than one word;
and (3) should not contain spelling corrections. For (3), we used the following heuristic: each of its
queries must be sufficiently different from the previous one, i.e., its editing distance (in characters)
should be greater than 3.
Figure 3(a) reports the relative results obtained on this subset of 193, 336 complex sessions. In

particular, we want to compare the results of the flat and of the hierarchical models. We note the
good behavior of pre-trained flat transformers for query suggestion for the complex search task,
while it emphasizes the weakness of the pre-trained hierarchical models on these sessions. The
flat models improve the results on these sessions over the corresponding hierarchical model on
all metrics: BERT is less deteriorated than H_BERT, and likewise BART and Enc_BART are less
impacted than H_BART by the complexity of the sessions, and the same is true for T5 models. For
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Fig. 3. Difference between the performance on all the AOL sessions and on the noisy version (filtered/
concatenated). Negative values indicate a degradation.

the fully trained models, TS_WP is also less impacted that H_TS_WP on this subset of sessions on
all metrics. This shows again the robustness of flat models.

(b) Results on noisy sessions. To assess the robustness of the approaches, we add one random
session at the start of each session of the test set. Since the intent of these added sessions (in av-
erage) is not the same as the intent driving the users’ behavior when formulating test queries,
models must have learned to identify thematic breaks, and to ignore this noisy information.
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Figure 3(b) shows percentages of performance loss for every metric. We can see that for all mod-
els, the flat architectures aremuch less impacted than their corresponding hierarchical counterpart.
This is an important result, since the test sessions were arbitrarily split according to a 30-minute
timeout, which might not correspond to users’ intent changes. It shows that with the hierarchy,
the transformers lose their ability to focus on relevant part, and so to adapt themselves to longer
sessions.

(c) Sessions Lengths. We study the impact of the sessions lengths on the two pre-trained models
BERT and BART (flat and hierarchical versions) on theAOL dataset. Results are reported in Figure 4.
Whatever the metric, the hierarchical models (in green) perform better than the flat ones (in red)
for short sessions. However, for longer sessions (above seven queries), it is the other way around.
The flat models scores remain stable while the scores of the hierarchical models decrease. The
hierarchical architecture of [23] is adapted to short and more simple sessions search, but for longer
and complex tasks the flat transformers are more suitable. We believe that this is due to the fact
that hierarchical transformers cannot focus reliably on the relevant parts of the session.

4.6 Generated Queries

Finally, in Table 3, we give examples of query suggestions for three sessions, and multiple models:
HRED_WP (which is the best among the RNN baselines), the fully trained transformers TS_WP
and H_TS_WP, and the pre-trained ones Enc_BART, H_BART, and BART.
First, we note that the RNN-based model HRED_WP generates the same word several times in

a row. This behavior is very common for HRED_WP. For the session presented in the first column,
it suggests “divorce groups groups”, for the second “maryland hotel hotel ocean”, and for the third
“disney resorts resorts”. Note that this is something the transformer models never do. Moreover,
HRED_WP does not introduce new words, it reformulates the queries of the context by mixing
words order. On the contrary, the transformer models proposed more diverse suggestions.

We note that the hierarchical models have a greater tendency to copy words from the context
compared to their flat version (we study this behavior in the next section). H_TS introduces only
one new word (“free”) in the suggestions of the first session, while TS_WP proposes several new
themes (“listings”, “ebay”, and “aol”). The second presented session contains a typo: “marylando-
cean” instead of “maryland ocean” with a blank space. The hierarchical H_BART did not succeed
to correct this typo, it proposes “marylando ocean city” because it is more willing to copy words
from the context, and thus a part of this typo, while the flat transformer models did not.
The pre-trained models BART and H_BART propose more diverse suggestions compared to

the fully trained models. In the session of the third column, the user performs queries on several
topics of the same subject. While the various models succeed to integrate the diverse themes in
the suggestions, the pre-trained models introduced more new topics : “texas”, “hotels”, and “ebay”.
Finally, we notice that the suggestions of BART tend to be longer than the ones of the other models,
confirming the experimental results shown earlier.

5 TRANSFORMER FOR QUERIES SUGGESTION ANALYSIS

We now investigate the behavior of this latter model BART and design experiments to answer the
last question Q3: How does the flat transformer generate queries?

Several papers propose to analyze transformers to check which information is learned or used
[11, 15, 32] through either probing different parts of the layer, or by looking at the attention toward
the input [15]. In this section, we follow this latter line of work, focusing on specific properties of
transformers for query generation.
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Fig. 4. Models scores depending on the length of the sessions.

To do so, we focus on the attention of the decoder toward the encoder output (see Section 3.1),
i.e., the attention weights computed for Ad→e. When generating the (t + 1)th token, we denote

α (t )
lhi j

the attention from the ith decoder token into the jth encoded token for each layer l and

attention head h. To summarize this information, we: (1) average the attention over the different
heads – following [15]; and (2) only look at the attention of the jth output token when generating
the j + 1th output token. The rationale for the latter is that the generated token at step j + 1 mostly

depends on the final representation t (Ld )j of the decoder token j, as shown in Equation (2). Moreover,
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Table 3. Generated Queries for Three Sessions

Q1. divorce chat rooms
Q2. divorce support groups

Q1. maryland ocean city
Q2. marylandocean vity hotel

Q1. carobean cruises
Q2. spa resorts
Q3. disney world

HRED_WP

- divorce support groups
- divorce chat groups
- divorce divorce groups
- divorce groups groups
- divorce support

- maryland hotel hotel
- maryland hotel ocean
- maryland hotel hotel ocean
- maryland hotel
- maryland hotel ocean ocean

- disney world resorts
- disney resorts resorts
- disney world
- disney vacation resorts
- disney resorts

TS_WP

- chat room listings
- ebay
- aol chat
- chat rooms
- divorce chat room

- ocean city maryland
- ocean city md
- mapquest
- ocean county maryland
- expedia

- disney world
- travelocity
- disney world hotels
- disney world cruise
- disney cruise

H_TS_WP

- divorce support groups
- free divorce support groups
- divorce
- divorce chat rooms
- divorce support

- maryland ocean city
- ocean city maryland
- hotels in maryland
- hotel ocean city
- mapquest

- disney world
- sea world
- disneyworld
- carnival cruise
- spa resorts

Enc_BART

- divorce chat rooms
- divorce chat room
- divorce support group
- divorce support
- divorce chat

- maryland hotel
- maryland hotels
- mapquest
- maryland
- maryland beach hotel

- disney world
- disney world cruises
- disney world texas
- disney world hotels
- disney world resort

H_BART

- divorce support groups
- divorce
- free divorce chat rooms
- divorce help
- free divorce help

- maryland ocean city
- marriott hotels
- marylando ocean city
- marriott
- mapquest

- disney world
- spa resorts
- disney world cruise
- disney world resorts
- ebay

BART

- divorce chat rooms
- divorce support groups
- free divorce support groups
- divorce chat room
- free divorce chat rooms

- maryland ocean city hotel
- maryland ocean city
- maryland ocean city hotels
- maryland ocean town hotel
- maryland ocean city resort

- disney world
- spa resorts
- disneyworld
- disney world cruise
- disney world hotels

The two first queries of the sessions are given in the top of the Table (Q1 and Q2), and the first five suggestions of each

model reported below.

we observed that the attention did not vary much during the generation process, and hence those
values are close to their average. We denote those averaged and picked attentions of token i on
token j at the layer l as α̃l i j .

Finally, as shown in [11], the attention weight might not be a reliable indicator in all cases,

since the actual modification of the representation depends on the value vh (s
(L)
i ) as shown

in Equation (1). To cater for this problem, we define the importance (of an attention) β (t )
lhi j

as

α (t )
lhi j
‖vlh (s (L)i )‖. As for the attention, we summarize those values as β̃l i j . Unless specified, we

focus on results for Bart —but most of the behavior is shared by the different versions of the
transformers we analyzed.
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Fig. 5. Importance of the queries depending on their (normalized and using quantiles) positions in a session
(average over layers).

5.1 The Growing Importance ofQueries

In this section, we will answer the first sub-question Q3. (a) On which context’s queries does

the flat transformer focus its attention?

Sordoni et al. [60] claim that the last query—which they called the anchor query—plays a crucial
role in queries suggestions. We verify this claim by assessing whether more attention was paid to
the last queries in a session or not. For long enough sessions (≥ 5 queries), and for each query, we

first sum the importance β̃l i j over its tokens, and normalize the value by dividing it by its maximum
value, so that we can average sessions of varying length. For the same reason, we normalize the
index of each query by the length of the session, i.e., i/|S |. In Figure 5, we plot the boxplot of
the importances given the normalized index of the query in the session. The x-axis corresponds
to the position of the query in the session (from left to right: from the beginning to the end of
the session), and the y-axis to the importance of the query. We see that there is a trend showing
that last queries are more important for the prediction of the transformers since they have more
impact on the vector used for predicting the output. It also explains the robustness of BART on
concatenated sessions 3(b).

5.2 The Importance of the Context’s Tokens

We now answer the second sub question of Q3. (b) On which context’s tokens does BART

focuses its attention?

For each decoded token (including the special token START numbered 0), we first look at the
importance assigned to encoded tokens. In Figure 6, each cell (i, j ) in the grid gives the importance
of the jth token (of each query in the session, e.g., the second token of each query in the session
is numbered “2”) when decoding the ith token of the target query.

We only plot the importance for two representative layers (1 and 12), as we can distinguish two
layers groups that behave similarly (not shown here: 1–4 and 8–12). We can observe that at layer
1–4, the importance focuses on tokens that match the same position (e.g., the first tokens of each
query and the first decoded token). For the decoder token START (numbered 0), the importance
is more broadly distributed—which is sensible since nothing has been generated so far. On layers
8–12, the importance focuses on tokens that match the next token position (e.g., the first tokens of
each input query for START, the second tokens of each input query for t1, and so on). This shows
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Fig. 6. Importance of the tokens depending on their position in the queries (attention of the decoder on the
encoder), for layer 1 (a) and layer 12 (b) of the encoder. The X -axis corresponds to the context— i.e., the
encoder tokens (averaged over all queries), while the Y -axis corresponds to the decoder—i.e., the decoder
tokens. For the decoder, 0 corresponds to the START token. For instance, from (a) we see that when generating
the 3rd token (row of index 2), the attention is focused mostly on the second token, and also (but less) on
the first and third ones. This is different for the same token at layer 12 (b), where most of the attention is
focused on the third token of every past query. Results are averaged over 20,000 sessions.

that transformers first focus on the matching encoded token before selecting the next token to
generate.
The figure also underlines that BART, even without explicit hierarchy architecture, is able to

capture the basic structure of sessions, the attention being in average more focused around the
matching tokens (i.e., same position) of the queries present in the context session (as shown by
the diagonal in both graphs).
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5.3 Generating a New Token

Finally we answer the last sub question Q3. (c) How does the model choose the next token to

generate?

This brings interesting questions in terms of the generative process of the transformer-based
architectures. For the START decoder token, the only explanation is that they first focus on the
“[SEP]” encoded tokens, and then shift their attention to the next ones—relying on the position
embedding that is added to the encoded token representations. For the next tokens to be generated,
this is less obvious since the model could simply focus on a matching token (e.g., the decoder token
“cat” matches the encoded tokens “cat”). As queries are often repeated within a session with small
variations, the tokens might be in the same positions (in average) in the session queries and in
the generated query. Consequently, to generate the next token, there are two possibilities: either
the transformer shifts the attention towards a token to the right (position-based decision), or, the
(query) language model of the decoder proposes a direction in the token space, which is then
matched if an encoded token lies in this direction in the representation space.
To look into this, we used sub-sessions of the form

. . . . . . | . . . A B C . . . | . . .A B

for which the next query to be predicted (in red) contains a bi-gram of tokens (A,B) that exists in the
past queries, followed by a different token C. For example, the target query contains “black/A cat/B”
and the session contains a query with tokens “black/A cat/B sold/C”. We calculate the probability
of generating after “black/A” in the target:

— the target token (“cat/B”) with a probability P (B |S,A)
— the token following the bi-gram in the context (“sold/C”) with a probability P (C |S,A)

We do this for two settings: (1) using the original context session as S and (2) using a modified
context session S for which we swapped tokens B and C in the context (i.e., substituting “black/A
sold/C cat/B” –“black/A cat/B sold/C”). The goal is to assess whether the model favors a language
model (LM) that captured that B usually follows A, or rather a copy mechanism that mainly
considers positions from the context session (POS). Following this process, the average prob-
abilities are computed over a set of 20,000 sessions and are reported in Table 4 for the different
transformers.
First, when position (in the context session) and language model agree (first and second

columns), the probabilities are high for the real target and low otherwise. Among the different
models, we note that the best performing models (Section 4.4) have a very high probability of
generating the token B (between 0.7 and 0.8).
When position (in the context session) and language model disagree (4th and 5th column), the

behavior of the architectures is quite different. Apart from the TS_WP (and to a lesser extent
its hierarchical version) which mostly follows the language model (0.03 vs 0.19) and ignores the
context session, we see that all the other models assign balanced probabilities to position and
language in these swapped sessions.
Sufficiently powerful flat models such as BART appear sufficient to capture the query organiza-

tion of sessions, while keeping enough flexibility to adapt to perturbations.We indeed observe that
BART has both high probabilities of either following the language model or the position-based pre-
diction (total probability of 0.63), which is nearly as high as when the context session and language
model match (0.70). This difference with the other models might explain why BART is performing
so well: it leverages both the copying mechanism and its powerful language model.
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Table 4. Probabilities on Mixed and Unmixed Sessions

Session S Original B/C swapped
... A B C ... ... A C B ...

probability p (B |S,A) p (C |S,A) total p (B |S,A) p (C |S,A) total
favors LM/POS LM POS LM/POS

Transformer WP 0.19 0.03 0.22 0.19 0.03 0.22
H Transformer WP 0.67 0.01 0.68 0.37 0.22 0.59

BERT 0.46 0.01 0.47 0.17 0.23 0.40
Enc_BART 0.51 0.00 0.51 0.21 0.20 0.41
Enc_T5 0.57 0.02 0.59 0.21 0.26 0.47
BART 0.70 0.03 0.73 0.35 0.28 0.63
T5 0.80 0.02 0.82 0.36 0.36 0.72

H BERT 0.63 0.01 0.64 0.20 0.34 0.54
H BART 0.72 0.01 0.73 0.29 0.28 0.57
H T5 0.68 0.01 0.69 0.31 0.27 0.58

For each original and swapped sessions, the preference of the model is highlighted in red (for differences

above 0.01).

5.4 Human Evaluation

To further investigate the ability of the flat models, we conducted a human evaluation by compar-
ing 100 queries predicted for AOL and MS Marco by all the models. The judges were presented
complete sessions and corresponding suggestions predicted by each model. They had no knowl-
edge of the ground truth or the user’s goal. In our user modeling framework, we seek to evaluate
whether suggestions make sense to annotators based on the user’s session, not only whether they
are syntactically correct. That’s why judges were asked to evaluate the suggestions that were most
likely to meet the user’s need in the session by answering the question “is this query likely to
follow in the session?”. They were asked to rank the predictions from most to least suitable. Anno-
tators are supposed to be able to infer the user’s purpose from the session. Indeed, no more can be
expected from an optimal policy that only has the user session at its disposal, and this is what we
are trying to assess. Giving the user’s purpose to the annotators could have biased the evaluation
by leading the annotators to evaluate too negatively many suggestions, even though they corre-
sponded to average user behavior. We further asked the annotator to rank exact repetitions and
generic queries (e.g., “google”) as bad predictions. We report in Table 5 the % of times a model is
judged better than another one.
The evaluation confirms the results obtained with the other metrics. The models ACG, HRED

and the different transformers are increasingly better (e.g., on AOL, 27% of predicted queries are
better for Bart than for HRED, and 17% for the other way around). Among transformers, pre-
trainedmodels perform better (5%–10% gap), with Bart doing slightly better than Bert. Regarding
WordPiece tokenization, they do perform better except for Transformer on AOL, and for ACG.

6 CONCLUSION

In this article, inspired by the success of transformer-basedmodels [63] in various NLP and IR tasks,
we looked at the various architectures that could be applied to query generation.We compared tok-
enizers, architectures, and different pre-training methods. We show that while hierarchical models
permit to obtain better performance than corresponding flat architectures, they are not adapted
for long and complex sessions. We conducted a deeper analysis on the flat models to understand
why they are better at handling these sessions. We analyzed their generation process, and found

ACM Transactions on Information Systems, Vol. 40, No. 1, Article 18. Publication date: October 2021.



On the Study of Transformers for Query Suggestion 18:23

Table 5. Human Evaluation on 100 Queries for MS Marco and AOL

HRED HRED WPT ACG ACG WPT TS TS-WPT BERT
MS MACRO

HRED WPT 19% vs 18%
ACG 26% vs 29% 22% vs 22%
ACG WPT 20% vs 22% 17% vs 21% 22% vs 24%
TS 32% vs 11% 33% vs 13% 38% vs 16% 36% vs 13%
TS WPT 37% vs 10% 35% vs 10% 42% vs 15% 39% vs 11% 15% vs 10%
BERT 41% vs 10% 38% vs 8% 42% vs 15% 43% vs 11% 25% vs 15% 22% vs 18%
BART 43% vs 9% 42% vs 11% 45% vs 11% 44% vs 9% 27% vs 15% 21% vs 16% 19% vs 16%

AOL
HRED WPT 23% vs 16%
ACG 13% vs 24% 10% vs 29%
ACG WPT 4% vs 24% 6% vs 32% 7% vs 15%
TS 34% vs 17% 31% vs 20% 35% vs 3% 43% vs 5%
TS WPT 28% vs 15% 24% vs 18% 32% vs 5% 38% vs 5% 13% vs 18%
BERT 34% vs 13% 31% vs 18% 41% vs 9% 44% vs 6% 28% vs 24% 28% vs 19%
BART 38% vs 17% 35% vs 20% 41% vs 11% 45% vs 8% 30% vs 28% 31% vs 24% 26% vs 24%

Each cell is the % of times model in row is better than model in column vs the reverse (and the remaining % is equality).

that the flat transformer is, on one hand, a position model that is able to recover the structure of
a web search session (input queries are concatenated), and on the other hand, a good (query) lan-
guage model. Future work will focus on improving the hierarchical architecture, so the model can
handle more complex search tasks, and incorporating signals of various natures (longer history,
clicked documents) into transformer-based architectures. Our study is limited to query-based
search sessions, but the hierarchical structure of data is also present in conversational searches
[4, 69]. However, while in our case the user is modeled according to their own past actions only,
the setting of conversational search requires to consider external data such as available documents
in the collection, or the IR system’s answers, to drive the user toward their target documents. Our
study could be extended in future work to the conversational search setting by integrating actions
from the search agent in the model.
It will also focus on working on architectures able to cope with long sessions, potentially all the

user history, using other recently introduced transformers [5, 18, 36] that overcome the limit of
the maximum context length.
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