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Abstract. Most recent document standards like XML rely on structured representations. On the other hand,
current information retrieval systems have been developed for flat document representations and cannot be easily
extended to cope with more complex document types. The design of such systems is still an open problem.
We present a new model for structured document retrieval which allows computing scores of document parts.
This model is based on Bayesian networks whose conditional probabilities are learnt from a labelled collection
of structured documents—which is composed of documents, queries and their associated assessments. Training
these models is a complex machine learning task and is not standard. This is the focus of the paper: we propose
here to train the structured Bayesian Network model using a cross-entropy training criterion. Results are presented
on the INEX corpus of XML documents.
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1. Introduction

The expansion of the Web has been paralleled by the development of large electronic
textual collections (e.g. electronic libraries, electronic journals and proceedings), and of
semi-structured databases with textual or multimedia content. New textual representations,
allowing interoperability, providing rich document descriptions and facilities to index and
access different document parts and content types are needed in order to manage and ac-
cess these resources. Several structured document representations and formats were then
proposed during the last few years together with description languages like XML. They
allow for richer descriptions with the incorporation of metadata, annotations and multi-
media information inside a logical structure schema. Document structure for these new
document formats is an important source of evidence, and should be considered together
with textual content for information access tasks. Information retrieval engines should be
able to cope with the complexity of these new document standards so as to fully exploit the
potential of these representations and to provide new functionalities for information access.
For example, users may need to access some specific document parts, navigate through
complex documents or structured collections using the context provided by the logical
structure. Queries may address simultaneously metadata, textual content and sometimes



656 PIWOWARSKI AND GALLINARI

logical document organisation. Extending information retrieval systems so that they can
handle structured documents is not trivial and cannot be performed by a simple modifica-
tion of existing flat IR systems. Many questions for designing such systems are still open.
For example, there is no consensus on how to index these documents or on the design of
efficient algorithms or models for performing information access tasks. Measuring struc-
tured IR systems performance is another area of open discussion in this field. The INEX
initiative1 has been launched in 2002 with the goal of developing research in this area. Dif-
ferent approaches and systems were presented and evaluated at INEX 2002 and 2003. We
presented there a new model based on Bayesian networks (BN). It has been designed as a
principled model for performing different IR tasks on collections of structured documents.
BN parameters are learnt so that the model may adapt to different corpora and to different
IR tasks. Basic versions of this model whose parameters were set up heuristically by hand
performed rather well for the Content Only task of INEX 2003 and ranked in the top 10
according to different measures. However, in our tests for INEX 2003, we faced several
difficulties for learning the parameters of these models from data. Training these stochastic
models for Structured Information Retrieval (SIR) appears to be a complex problem with
both conceptual and practical difficulties. The complexity comes from the definition of the
task itself. Passages with very different characteristics (e.g. length, content or organisation)
have to be ranked in the context of their enclosing document. Learning must take into ac-
count both passage characteristics and passage logical relationships. There is no general
agreement for now on what the “optimal” output of a SIR system should be. This is one of
the reasons for which evaluation measures for SIR systems are still an object of discussion
and controversy. Accordingly, the goal of learning is not well defined. There are additional
practical difficulties which are addressed later on.

In this paper, we consider ad-hoc retrieval for hierarchical document structures, i.e. we
make the hypothesis that documents are represented as trees. This encompasses many
different types of structured documents. For other cases as for example web sites, this is an
approximation of the actual logical structure. The tree structure hypothesis allows keeping
SIR model complexity down to a reasonable level. In this article, we focus on “content
only” (CO) queries—that is queries that are expressed as a set of keywords without any
structural constraint. The goal is then to rank first highly specific document elements—
called in the following doxels (for DOCument ELement)—which are the most exhaustive
and specific with respect to the query. We focus in the paper on the problem of training
the BN model using one of the assessed INEX collection and we present a new training
method. It is based on a discriminative training criterion instead of maximum likelihood
used in a previous tentative.

The paper is organised as follows. Related work concerning Structured Information
Retrieval (SIR) and BNs is reviewed in Section 2. Performance measures used in the exper-
iments are briefly discussed in Section 3. The BN SIR model is then introduced in Section 4.
This system makes use of local baseline IR models for scoring document elements which
are described in Section 5. The training algorithm is described in Section 6 and a series of
experiments on the INEX corpus are detailed and discussed in Section 7.
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2. Related work

One of the pioneer works on document structure and IR is that of Wilkinson (1994) who
attempted to use the document division in order to improve the performance of IR engines.
For that he proposed several heuristics for weighting the relative importance of document
parts and aggregating their contributions in the computation of the similarity score between
a query and a document. Doing this way, he was able to improve a baseline IR system.

A more recent and more principled approach is the one followed by Lalmas and co-
workers (Lalmas 1997). Their work is based on the theory of evidence which provides a
formal framework for handling uncertain information and aggregating scores from different
sources. In this approach, when retrieving documents for a given query, evidence about doc-
uments is computed by aggregating evidence of sub-document elements. Another important
contribution is the HySpirit system developed by Fuhr and Rölleke (1998). Their model is
based on a probabilistic version of Datalog. When complex objects like structured docu-
ments are to be retrieved, they use rules modelling how a document part is accessible from
another part. The more accessible this part is, the more it will influence the relevance of the
other part. A series of papers describing on-going research on different aspects of structured
document storage and access, ranging from database problems to query languages and IR
algorithms is available in a special issue of JASIST on XML retrieval,2 and in recent SIGIR
XML-IR workshops.2,3,4

In 2002, the Initiative for the Evaluation of XML Retrieval (INEX) was created in or-
der to promote the evaluation of content-oriented XML retrieval. This led to two work-
shops (Gövert and Kazai 2002, Fuhr and Malik 2003) in which many different approaches
were proposed. Most systems developed for the INEX CO task adapt to SIR “flat” text
retrieval models like language models and vector space models. We have conceived a
principled approach to SIR in which a BN is used to integrate information from various
sources (baseline flat text models and document structure) in order to give a score to each
document element.

BN (Pearl 1988, Jensen 1996) are a well known probabilistic framework which al-
lows specifying graphically what the dependences between random variables are. Since
Inquery (Callan et al. 1992), Bayesian networks have been shown to be a theoretically
sound IR model, with state-of-the-art performance. Furthermore, they encompass different
sound IR models. The simple network presented by Croft, Callan and Turtle (Callan et al.
1992) computes the probability that a query is satisfied by a document.5 This model has been
derived and used for flat documents. Ribeiro and Muntz (1996), Indrawan et al. (1994) and
de Campos et al. (2003a) proposed other approaches also based on belief networks which
were conceived for flat document retrieval. An extension of the Inquery model, designed to
incorporate structural and textual information, has been proposed by Myaeng et al. (1998).
In this approach, a document is represented by a tree. Each node of the tree represents a
structural entity of this document (a chapter, a section, a paragraph and so on). This network
is thus a tree representation of the internal structure of the document where the whole doc-
ument is the root of the BN while the terms are its leaves. The relevance information goes
from the document node down to the term nodes. When a new query is processed by this
model, the probability that each query term represents the document is computed. In order
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to obtain this probability, one has to compute the probability that a section represents the
document, then the probability that a term represents this section and finally the probability
that a query represents this term. In order to scale down the complexity of their model, the
authors made several simplifying assumptions. Crestani et al. (2003a, 2003b) propose an
extension of the BN model of de Campos et al. (2003a) for structured retrieval. Here the
information goes in the reverse way compared to Myaeng et al. (1998), i.e. it goes from
term nodes up to the document node.

Learning BN parameters is a well studied field (Krause 1998). One usually distinguishes
between two learning problems: learning the structure of BNs and learning their parame-
ters, i.e. their conditional probabilities. de Campos (2003a, 2003b) propose an algorithm
for learning both structural relations encoding term relationships in their BN model and
conditional probabilities for flat document retrieval. In our model, the BN structure is de-
rived from the structure of the XML corpus. We thus focus on the parameters learning
problem. Although different methods exist for that, they have mainly been experimented
in a limited context and usually for a limited problem size (at least compared to the SIR
problem handled here). Usually, for classification or diagnosis tasks, a unique BN is trained
from a labelled data set. New examples are then presented to the BN model and BN in-
ference allows computing the probability distribution for the different variables (e.g. class
variables). Our approach is different from this unique BN strategy. Each document in the
collection is modelled with a tree like BN. For a query, the probability of relevance for
different document elements is then computed using this model. This probability is used in
the final score computed for ranking the document elements. This is similar to modelling
sequences for speech or biology with Hidden Markov Models or to the language model
approach in IR, except that we do not consider here sequences but structured data. In this
sense, this is a new learning problem. Also, the goal of SIR is to rank heterogeneous doc-
ument elements. This is different from classical classification tasks where one has to make
a hard decision on the class; the former is more difficult since the relative score values of
doxels are important. The size of the collection and the number of document models which
need to be handled are other sources of difficulty.

Our work is an attempt to develop a formal modelling of document elements retrieval for
structured IR. Our modelling relies on Bayesian networks and provides an original approach
to the problem. We believe that this approach allows casting different access information
tasks into a unique formalism, and that these models will allow performing sophisticated
inferences. For example, they allow computing the relevance of different document parts
in the presence of missing or uncertain information. Compared to other approaches based
on BNs, we propose a general framework which should easily adapt to different types of
structured documents or collections. Another original aspect of our work is that model
parameters are learnt from the data.

3. Measuring the performance for SIR systems

In this section, we first present the assessment scale used in INEX before introducing some
of the measures which were proposed for SIR system evaluation. In many IR evaluation
frameworks, the relevance value of a document is restricted to 0 (not relevant) or 1 (rele-
vant). Such a scale is not suited for XML retrieval because of the “nested” nature of the
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XML elements forming a document (Piwowarski and Lalmas 2004). Since INEX 2003, the
following two-dimensional scale was proposed for the assessments:

• Exhaustivity (Ex), which describes the extent to which the document component discusses
the topic of request.

• Specificity (Sp), which describes the extent to which the document component focuses
on the topic of request.

Both exhaustivity and specificity are on a 4-points scale: not specific/exhaustive (0),
marginally specific/exhaustive (1), fairly specific/exhaustive (2) or highly specific/
exhaustive (3).

The evaluation of SIR systems for CO is an open problem and different measures were
proposed and used for INEX, none of them being fully satisfying. The measures used in 2002,
2003 and 2004 for the evaluation are generalisations of Precision and Recall. We will make
use here of the highly specific version of inex eval measure which will be used for INEX
2004. There are several variants of the inex eval measure. “Strict RP” credits only highly
specific and highly relevant doxels, “generalised RP” credits the doxels according to their
degree of relevance. The latter version favours systems which retrieve large elements (for
example whole documents) while the former does not credit near matches. The generalised
version is not well suited for SIR (Piwowarski and Gallinari 2003, Kazai et al. 2004).
The “highly specific” RP (RPhs) version6 we chose for the experiments presented here,
considers only highly specific doxels in the evaluation. It offers a good compromise since
retrieving highly specific doxels better reflects the goal of SIR than retrieving any relevant
element (generalised version) or only exact match elements (strict version). All measures
ignore overlap between retrieved doxels. See Gövert et al. (2003) for a detailed description
of these measures.

We will also make use of the Expected Ratio of Relevant (ERR) doxels measure
(Piwowarski and Gallinari 2003). This measure is based on a new hypothetical user be-
haviour which extends the classical IR assumptions: a user examines the list of retrieved
document sequentially in the reverse order of their relevance. With ERR, the structural
context of the retrieved elements is taken into account. While the user examines the list of
retrieved doxels as for classical IR, he or she is allowed to browse through the doxels in
the structural context of the retrieved one. It is then assumed that the user will access the
different context doxels with a given probability. This browsing behaviour is influenced by
the specificity of the context doxels inferred by the BN. ERR can be seen as a generalisation
of Recall for this user behaviour. INEX 2003 submissions were also evaluated using this
measure. It was shown that for different specific behaviours, ERR performed better than
inex eval (Piwowarski and Gallinari 2003) with respect to the desired behaviour of a SIR
system. One drawback of ERR is that it only measures the recall of the hypothetical SIR
user and there is for now no such a generalisation for precision.

We believe that ERR like measures which take into consideration specific SIR user
behaviour are better adapted to evaluate SIR systems than simple extensions of Precision-
Recall. However, none of the measures proposed for now is fully satisfying. In the experi-
ments (Section 7), performance will be evaluated with both “highly specific” inex eval and
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ERR. A presentation and a discussion of the different measures proposed at INEX 2003
can be found in Kazai (2003).

4. The Bayesian networks framework for structured information retrieval

4.1. Bayesian networks for structured IR

Belief networks (Pearl 1988) are stochastic models for computing the joint probability
distribution over a set of random variables. They are Directed Acyclic Graphs (DAGs) whose
nodes are random variables and edges correspond to probabilistic dependence relations
between 2 variables. The structure of the DAG reflects conditional independence properties
between variables, the joint probability of a set of variables X1, . . . , Xn decomposes as
follows:

P(X1, . . . , Xn) =
∏

i=1..n

P(Xi | pa(Xi ))

where pa(Xi ) is the parent set of Xi .
For SIR, BNs offer a natural framework for integrating different information sources

corresponding to content and logical structure information. Let us consider as an example
a simple document composed of 2 sections with respectively 1 and 2 paragraphs. Different
BNs can be used for modelling this document. We will use as an illustration the simple BN
shown in figure 1 where a structural element (corresponding to document D or to section S
node) is connected in the DAG to its immediate descendents, and the paragraph nodes Pg
are leaves. Variables D, S and Pg associated to the document, section and paragraph doxels
will take their value in a set of relevance values, for example (relevant R, non relevant
¬R). Suppose for now that, given a query q, P(X = R | q) is used for scoring the doxel
associated to variable X in the BN. Using the conditional independence hypothesis in this
document BN model, the score of Pg2 for example can be computed as:

P(Pg2 = R | q) =
∑
d,s2

P(Pg2 = R | s2, q)P(s2 | d, q)P(d | q)

where the summation is over all possible values d and s2 (R and ¬R in this example) of BN
variables D and S2. The score of an element thus depends on its context as defined by the
dependence relations encoded in the BN. With this simple model, this context is reduced

document D

section s1 section s2

paragraph pg1 paragraph pg2 paragraph pg3

Figure 1. A simple BN for modelling a document composed of 2 sections with respectively 1 and 2 paragraphs.
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to the element ancestors. With more complex models, the context could be increased to
include other BN variables like siblings, etc.

4.2. A Bayesian network model for structured information retrieval

Let us consider a hierarchically structured collection like the INEX corpus. Documents are
organised in a category hierarchy in which the corpus is the root node, journal collections (a
set of journals) are its immediate descendents, followed by journals, articles and so on. We
view retrieval for such a collection as a stochastic process in which a user goes deeper and
deeper in the corpus structure: the user starts its search at the “root node” of all categories,
and then selects one or several categories in which relevant documents should be. For each
category, he or she selects subcategories and/or documents within these categories. This
process is iterated until the user has found the doxels which are the most exhaustive and
specific—we will say that these doxels are SIR-relevant in order to avoid the confusion with
the relevancy as defined in flat document databases.

The BN structure we use directly reflects this document hierarchy and retrieval follows
the above stochastic process. We consider that each structural part within the hierarchy has
an associated random variable. The root of the BN is thus a “corpus” variable, its children
the “journal collection” variables, etc (see figure 2). The whole collection is thus a large
BN which reflects the doxel hierarchy in the collection. Searching this model amounts to
perform the retrieval process described above: higher level doxels are first evaluated and
depending on their score, their descendents may be selected and scored etc.

In this model, due to the conditional independence property of the BN variables, relevance
is a local property in the following sense: if we knew that the journal is (not) relevant, the
relevance value of the journal collection would not bring any new information on the
relevance of one article of this journal. This choice of model structure has mainly been
motivated by practical considerations. We also considered using models taking into account
relations between siblings, or models where the dependency between variables reflects a

corpus

Journal
collection

journal journal journal

article

Figure 2. Independence in the BN. Knowing the relevance of a journal (the double circled Journal variable in
the figure), the relevance of the journal collection has no influence on the articles relevance within this journal.
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different semantic between the doxels. We gave up with these models since their complexity
becomes rapidly prohibitive, even for dealing with medium size collections like INEX.

4.2.1. BN variables and notations. Each random variable in the BN can take its values in a
finite set. Existing BN models for flat (Callan et al. 1992) or structured (Myaeng et al. 1998)
documents use binary values (R, ¬R). This is too limitative for SIR since quantifying a doxel
relevance is more complex than for whole documents and should somewhat be related to the
two dimensional scale (specificity, exhaustivity) proposed for INEX. The state space of the
BN random variables should then be increased to better reflect this relevance space. Note
that once again a compromise has to be found since increasing this space increases the model
flexibility but also its complexity. A reasonable compromise was found experimentally with
a state space of cardinality 3, V = {I, B, E} with:

I for Irrelevant when the element is not relevant;
B for Big when the element is highly exhaustive and marginally or fairly specific;
E for Exact when the element is highly exhaustive and specific.

The exact relation of these variable values with the two-dimensional scale of INEX will be
described in Section 4.1; vx ∈ V = {I, B, E} will denote a realisation of the variable X .
The Retrieval Status Value (RSV) used with this model can be defined in several ways: the
form of this RSV function depends on the semantic of the BN variables. A simple choice
would be to use P(X = E | q), i.e. a SIR-relevant doxel would be ranked according to
the probability that it is both highly specific and exhaustive. Note that this does not take
into consideration the context of the doxel. The retrieval process starts from top nodes
and goes down in the corpus structure. It is then natural to take into account the state of
parent nodes for scoring a doxel. For any element X and for a given query q, we propose
to use P(X = E ∧ X ’s parent = B | q) as the final Retrieval Status Value (RSV) of
this element. This means that an element can be judged SIR-relevant only if its parent
has already been judged relevant but not highly specific. This is consistent with the SIR-
relevance definition: in the structured collection, the ancestors and therefore the parent of
SIR-relevant elements are also exhaustive but are less specific. In the experiments, this choice
led to better performance than the simple P(X = E | q). Besides these variables, there are
two more types of random variables in the BN. The first one corresponds to the query need:
it is denoted Q and its realisation q . Q is a random vector of word frequencies taking its
values in a multidimensional real space. This random variable is always observed (known).
Document textual information is not directly modelled in this BN for complexity reasons.
Instead a series of baseline IR models is used to compute local relevance scores for each
doxel given a query. For each local baseline model, this score only depends on the doxel
content and on the query. It is then independent from the context of the doxel in the XML tree.
The global score for each doxel then combines these local scores and depends also on the
doxel context in the BN. These local baseline models have been adapted from classical (flat)
retrieval IR models. In the experiments presented here variants of the Okapi model were
used for baselines. In the BN model a random variable is associated to each local scorer
and doxel. Let Mi (X ) denote the random variable associated to the i th local baseline model
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Query

Baseline model 1 for Y (M1) Baseline model 2 for Y (M2)

Baseline model 1 for X (M1) Baseline model 2 for X (M2)Parent (Y)

Doxel X

Ancestors of Y

Chidren of X

Figure 3. A local view of the BN—two local baseline models (model 1 and 2) are used here.

and to doxel X and mi its realisation. As in classical IR this variable will take two values:
R (relevant) and ¬R (not relevant), i.e. mi ∈ {R, ¬R} . The local relevance score of X
given the query q for the i th model is P(Mi (X ) = R | q).

To summarise, the BN model is entirely defined by the variables X associated to each
doxel which take their values in V = {I, B, E}, conditional probabilities P(X | pa(X ))
for all X , the Q variable corresponding to the query taking its values in R|V | (a vector of
real components, one for each term of the vocabulary set V ), the Mi (X ) local variables
taking their values in {R, ¬R} and the corresponding probabilities P(Mi (X ) = R | q). The
three variable types are illustrated in figure 3. q , mi and vX will denote realisations of the
corresponding BN variables and n the number of local baseline models used in the BN. The
doxel score for ranking is P(X = E ∧ X ’s parent = B | q).

4.2.2. Doxel scoring in the BN. Based on the local scores Mi (X ) and on the BN conditional
probabilities, BN inference is then used to combine evidence and scores for the different
doxels in the document model. In our tree like model, the probability that element X is in
state I , B or E depends on its parent state and on the fact that the local baseline models
have judged the element as relevant or not relevant (figure 3). The probability that X is in
a given state vx ∈ V is then:

P(X = vx | q) =
∑
vY ∈V

m1,... ,mn∈{R,¬R}

P(X = vX | Y = vY , M1(X ) = m1, . . . , Mn(X ) = mn)

× P(Y = vy | q) × P(M1(X ) = m1) × · · · × P(M1(X ) = m1) (1)

This summation simply expresses the marginalisation of the joint probability of X and
its parent variables. In this expression, the summation is over all the possible values of
vy, m1, . . . , mn (vX can take any value in V = {I, B, E}, and each mi can take values in
R, ¬R).
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Table 1. Conditional probabilities associated to node X in
figure 3. Each table entry gives the probability that X is I, B
or E given the values of its parent variables Y and Mi (X ) for
i = 1, 2. For example, the “*” in the table represents three
values: P(X = I | Y = B, M1(X ) = R, M2(X ) = ¬R),
P(X = B | Y = B, M1(X ) = R, M2(X ) = ¬R) and
P(X = E | Y = B, M1(X ) = R, M2(X ) = ¬R).

P(X = I/B/E |Y, M1(X ), M2(X ) Y

M1(X ) M2(X ) I B E

R R

R ¬R *

¬R R

¬R ¬R

P(X = vx | Y = vY , M1(X ) = m1, . . . , Mn(X ) = mn) is usually encoded into condi-
tional probability tables, one table for each doxel. Table 1 for example is the conditional
probability table for doxel X in figure 3.

In many situations, for BN applications, these parameters are fixed by hand using prior
knowledge, or when all variable values are known for each example, they are estimated by
simply counting the co-occurrences of the different dependent variable values. Here, the
situation is different. There are a large number of variables with no precise indication on
what their value should be for each training example so that the parameters cannot be fixed
a priori and cannot be estimated by simple counting. These parameters (i.e. conditional
probabilities table entries P(X = vx | Y = vY , M1(X ) = m1, . . . , Mn(X ) = mn)) will then
be learnt as described in Section 6. Each table entry is a real number in [0, 1] and these
entries verify the constraint

∑
vX ∈{I,B,E}

P(X = vX | Y = vY , M1(X ) = m1, . . . , Mn(X ) = mn) = 1

as X takes its values in {I, B, E}. In order to limit the number of free parameters in the BN
model, additional constraints were imposed on these conditional probabilities. Doxels were
grouped in categories—each category corresponds to a set of tags with a similar semantic. All
the doxels within a same category share the same conditional probability table. This means
that conditional probability tables are the same for all the doxels in the same category—for
the whole collection. Note that doxels in a given category may appear in the same document
and/or in different documents. The categories used for the experimentations described in
this paper are given in Table 2: 7 distinct categories were used. This parameter sharing
strategy is common in stochastic modelling.
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Table 2. Element categories used in the experiments on INEX 2003.

Tag name of doxel X Category cX

bib, bibl, ack, reviewers ip, ip1, ip2, ip3, bb, app, p1, p2 paragraph

figw, fig figure

l1, l2, l3, l4, l5, l6, l7, l8, l9, la, lb, lc, ld, le, list istem
numeric-list, numeric-rbrace, bullet-list, index
index-entry, item-none, item-bold, item-both, item-bullet,
item-diamond, item-letpara, item¬mdash, item-numpara,
item-roman, item-text

hdr, hdr2, hdr1, h3, h2, h2a, h1a, h1, h header

bdy, article container

ss, ss1, sec1 section
∗(any other tag) misc

In order to enforce these constraints on the BN conditional probabilities, the probability
estimates are defined as follows:

P(X = vX | Y = vY , M1(X ) = m1, . . . , Mn(X ) = mn)

= FX (�, vX , vY , m1, . . . , mn)

= eθcX ,vX ,vY ,m1 ,... ,mn∑
v∈V={I,E,B}

eθcX ,v,vY ,m1 ,... ,mn
(2)

In (2), the θcX ,vX ,vY ,m1,... ,mn are real values to be learnt. There is one such parameter for each
tag category cX and value set vX , vY , m1, . . . , mn . All the doxels sharing the same value
set cX , vX , vY , m1, . . . , mn will share this parameter. θcX for short will denote the vector of
parameters associated to any node with tag cX , i.e.

θcX = {
θcX ,vX ,vY ,m1,... ,mn | vx , vy ∈ V, m1, . . . , mn ∈ {R, ¬R}}

� denotes the set of all the θ... parameters in the BN: � = ∪cX θcX . The denominator
in (2) ensures that conditional probabilities sum to 1. The particular form (2) has been
found convenient here. Constraints could be taken into account in the formulation of the
optimisation problem instead of using this particular form for the conditional probabilities.
This would lead to much more complex learning algorithms. Note that according to the
BN structure, query q does not appear explicitly in conditional probability (2). It appears
implicitly in values m1, . . . , mn and vY .

5. Local baseline model: Okapi

Let us now present the local baseline models used for computing local doxel scores in the
experiments. The BN has been designed so as to integrate scores computed by different
baseline local scorers. Many baseline models could be used with this BN model. The
only requirement is that their output can be interpreted as a probability of relevance given
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the query. We used here Okapi variants as our local baseline models. Okapi (Walker and
Robertson 1999) was adapted in order to (1) reach reasonable performance on the INEX
corpus (and on a structured collection in general) and (2) compute a score which could be
interpreted as a probability with this model. We did not consider feedback; this was left for
further investigation.

The local RSV of a doxel X for a given query q, computed by the local baseline Okapi,
is defined by:

Okapi(q, X) =
length(q)∑

j=1

ωj,X
(k1 + 1)t f X,j

K X + t f X,j
× (k3 + 1)qt f j

k3 + qt f j
(3)

where k1 and k3 are constants,7 length(q) is the number of terms in query q . (3) is similar
to the classical Okapi except for the index X appearing in ω j,X , K X and tfX, j . Okapi makes
use of different statistics relative to the document collection such as term occurrences or
mean document length. Since for SIR elements to be retrieved are doxels and not plain
documents, these statistics have to be adapted. Values ωj,X and K X are defined as follows:

• ωj,X = log( N−n j +0.5
n j +0.5 ). In Okapi N is the number of documents in the collection and n j

the number of documents containing term j. There are different options for adapting
these collection statistics to SIR. We will present here tests where these two values were
defined respectively with respect to the classical document set (“document frequency”)
as in Okapi, to the set of all doxels (“element frequency”) or to the set of doxels with the
same tag (“tag frequency”).

• K X = k1((1−b)+b dl
avdl ) where b is a constant and in Okapi dl is the document length and

avdl is the average document length. Here dl was replaced by the doxel length and three
different weighting schemes were tested for avdl: the average length taken respectively
over all the doxels (“corpus”), over all the doxel with the same tag (“tag”) or over all the
sibling doxels (“parent”).

Results for the whole INEX collection are shown in figure 4 for the ERR and the highly
specific R Phs measures. In this figure each experiment is denoted by two letters L1–L2. The
first letter L1 corresponds to the “doxel collection” which is used for the computation of
the document frequency. It can take three values: D (“document frequency”), E (“element
frequency”) and T (“tag frequency”). The second one L2 (length normalisation) can also take
three different values: C (“corpus”), T (“tag”) and P (“parent”). Both ERR and RPhs measures
order the different models similarly. Worst performance are obtained with (.-C) models
length normalisation (3 bottom curves on figure 4 top). Length normalisation with respect
to all doxels is ineffective, probably because of the large variability in doxel length in the
collection. Normalisation with respect to doxels with the same tag or with respect to siblings
is to be preferred. Models (E-.) and (T-.) have a middle range performance. Classical inverse
document frequency (D-.) seems better suited than element or tag frequency. Other models
perform equally well for ERR while being slightly different for R Phs . Based on these results,
for the BN experiments, we retained only two models among the best for both measures: the
D-P (Document frequency—Parent length normalisation) and D-T (Document frequency—
Tag length normalisation) versions of Okapi. The two models have a similar performance,
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but behave differently—the latter tends to rank higher smaller doxels. For INEX 2003 a
similar model ranked 6 among 56 other models for the strict inex eval measure.

For the BN model, one needs scores in the form of probability estimates. Okapi score does
not range between 0 and 1. The normalisation of Okapi is discussed in Robertson (2002)
in the context of filtering, where it is proposed to make a regression of the original Okapi
score via a logistic function. We used this idea here with the following transformation:

P(MOkapi(X ) = R | q) = 1

1 + eα×Okapi(q,X)/length(q)−β
(4)
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This formula gives the normalised score for the local baseline variants of Okapi model. The
α and β parameters are estimated on the whole INEX 2002 database. Score (3) is dependant
on the query length. Since the parameters of the logistic function should be valid for queries
of varying length, this score was divided in (4) by the query length. We then computed the
mean okapi score µ and the standard deviation σ for all the CO queries of INEX 2002.8 We
then set α and β such that the probability P(MOkapi(X ) = R | q) is 0.5 when the score is µ

and 0.75 when the score is µ + σ . These values were chosen empirically. This is different
from Robertson (2002) where the parameters of the regression are estimated for each query.
This would not be realistic here because of the increased complexity of SIR.

6. Learning with BNs

Training BNs for SIR is a challenging machine learning task. Most applications of BNs
deal with diagnosis or classification and usually, a single BN is used for a task and trained
on a series of examples. In our case, there is one BN per document and it is used for scoring
the document doxels for any query. There are many practical difficulties for this training
task. First there is an important heterogeneity in the data set. For example there is a large
variability in doxel length and content and the number of training examples is relatively small
in the INEX database with respect to this variability (30 queries). Also, training requires a
coherent labelling of the dataset. Query assessment for INEX is a tedious and non trivial
task. Semi-automatic annotation tools are being developed in order to help assessors and
to verify the coherence of the assessments. However, for now, although assessments for
INEX 2003 were much more satisfying than for the preceding collection INEX 2002, they
are not yet complete, coherent and homogeneous. They may then lead to contradictory
judgements and mislabelling which is damageable for learning. Another difficulty comes
from the nature of the task and the fact that the learning goal is not well defined. At last,
ranking is a more difficult task than classification since the relative values of scores are
important.

In any case, training the BN is a non standard application of machine learning and such
a new situation usually requires extensive experimentations with different models and a lot
of tuning for the learning parameters before finding an appropriate solution. We report here
the solutions we have developed so far to this problem.

Training a BN is usually performed by maximizing the likelihood of the model over
a training set. Different algorithms may be used for that. In the simplest situation when
evidence is known for all variables, the conditional probabilities can be estimated by simple
counting. When the values of some variables are unknown other algorithms can be used, one
of the most popular being the EM (Estimation-Maximisation) algorithm (Dempster et al.
1977). Krause (1998) provides a review of training algorithms for BNs. In our case, for each
query the set of variables with evidence consists of all variables associated to nodes with
a relevance judgement. All other variable states are unknown or hidden in the terminology
of BNs. Iterative methods like EM have then to be used for training.

Experiments performed with EM maximum likelihood training on INEX led to dis-
appointing results. The algorithm allows learning the conditional probabilities: the data
likelihood regularly increases with EM iterations. However for these different experiments
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the performance measured with “highly specific” inex eval or ERR was lower than the one
obtained with Okapi D-P or D-T alone. Extensive experimentations did not allow us to solve
this problem. Although we do not have a theoretical analysis of this phenomenon, we can
provide some hints for explaining this failure. ML maximises the probability of observing
all examples where an example is a triple (query, document, doxel assessments for this docu-
ment). A first difficulty comes from the small proportion of assessed doxels in the collection,
which means that only a small proportion of the BN variables will get evidence. A second
difficulty comes from the observed variable labelling in the BN for ML. For ML training,
with this BN model, each variable X shall take one and only one value among I, B or E.
INEX assessments are on a two dimension scale (Exhaustivity, Specificity) with 4 possible
values on each dimension. On these 4 × 4 possible values, only 10 are valid. Each of these
10 assessments should then be mapped onto the 3-dimensional space V = {I, B, E}. Said
otherwise, to each assessment for doxel X, we associate target values 1 or 0 for the proba-
bilities P(X = vX | parent variables of X in the BN,q) for vX ∈ V. First this means that we
loose a large part of the information present in the assessments since the 10-dimensional
assessment space is mapped onto the 3 dimensional V space. Second, the target probability
distribution is only a very crude approximation of the goal of learning which should reflect
the desired ranking of the doxels. Learning a more adequate probability distribution would
involve a more complex BN model which would include real random variables. This would
be prohibitive for SIR. We therefore propose to use another training criterion for the BN
model: the cross-entropy (CE) between a target distribution and the distribution learnt by
the BN. This criterion allowed us to reach more satisfying performance which is promising.
As will be seen below, it reflects more closely the goal of learning for SIR, and allows much
faster training than EM. As for ML, in order to learn node conditional probabilities with
CE, a mapping must be defined between an assessment and its associated node variable
value. We first describe below the mapping adopted here.

6.1. Mapping the INEX relevance scale to the probability distribution of the BN states

Let us denote Exi Sp j a relevance assessment where i and j may be 0, 1, 2 or 3. For each
instance of Exi Sp j associated to a BN node X , we define a target probability distribution
P(X = νX ) for νX ∈ V = {I, B, E}. The corresponding mapping is defined in figure 5.

This mapping defines a semantic for the BN node values: E means highly specific and
exhaustive, I irrelevant and B means highly exhaustive but marginally specific. Note that
this mapping preserves more information with respect to the assessments than the one used
for ML since ML needs evidence while CE needs a distribution over I, B and E. It is also
closer to the learning goal since it provides ranked targets for the doxels instead of 0/1 labels
for ML. To illustrate the difference between ML and CE mappings, consider figure 5. With
ML, we must map each assessment to one of the three extreme points—the white discs in
figure 5. With CE, we can choose any value in the space defined by the three white discs.
This led to two kinds of problems for ML:

• Some assessment values were not mapped to any point: for instance, Ex1Sp1 is neither
fully “too big” (it is not Ex3), nor “relevant” (it is not Ex3Sp3), nor “irrelevant” (it is not
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Figure 5. Mapping the INEX scale to a probability distribution on states I, B and E. The table to the right gives
the exact distribution associated to each E Xi Sp j assessment. The graph to the left gives the same information in
a more intuitive way. Since P(X = E) + P(X = B) + P(X = I ) = 1 , we removed the P(X = I ) axis from the
graph.

Ex0Sp0). Therefore, with ML, some information was lost. With CE, we can use this type
of information.

• In order to avoid loss of information, it is possible to map different assessments onto the
same point: for example in the ML mapping, Ex3Sp3 and Ex2Sp3 were mapped to the
same point: the observation in this case was E (Exact). This mapping is obviously not
desirable. A solution would be to add extra states to V. But this would make the BN more
complex (the complexity for learning is proportional to |V|2—the number of different
possible values a node and its parent can take—where |V| is the number of states). The
output would be less easy to interpret and it would be difficult to define an adequate RSV
function for instance.

6.2. Training algorithm

The training criterion is the cross-entropy between target variable values as they are defined
by the above mapping and the values computed by the BN:

Q(�) = −
∑

q

weight(q)
∑

j

∑
v j ∈V

PT (X j = v j | q)logP�(X j = v j | q) (5)

where P� is the probability to be estimated and PT is the target distribution. We normalise
the contribution of each query by

weight(q) = (number of assessed nodes for q)−1.

The q summation is over the set of all training queries and the j one over the set of all
variables X j with a known probability distribution PT (X j = v j | q) for v j ∈ V . The latter
variables correspond to the doxel set with a known assessment in the training document set.
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Compared to ML, this criterion gives a better approximation of the desired distribution at
the different nodes and in this sense is thus closer to the goal of learning for SIR.

Minimizing Q(�) can be performed via gradient descent. The error derivative with
respect to parameter θ writes:

∂ Q

∂θ
= −

∑
q

weight(q)
∑

j

∑
v j ∈V

PT (X j = v j | q)

P�(X j = v j | q)

∂ P�(X j = v | q)

∂θ
(6)

where the summation is the same as for (5). The update formula for parameter θ is (the
derivation is provided in the appendix):

θ (t+1) ← θ (t) + ε
∑

q

weight(q)
∑

j

∑
v j ∈V

PT (X j = v j | q)

P�(X j = Vj | q)

×
∑

l∈anc( j)

∑
vl ,vpa(l)∈V

P�(X j = v j | Xl = vl , q)P�(X pa(l) = vpa(l) | q)

×
∑

m1,... ,mn∈{R,¬R}

∂ FXl (�, vl , vpa(l), m1, . . . , mn)

∂θ

n∏
s=1

P(Ms(Xl) = ms | q) (7)

where ε is the learning rate. The first summations over q, j and v j are similar to those
in (5). In the second summation (l ∈ anc( j)), for each value v j of a variable X j with a
known assessment, we sum up all the contributions, with respect to a given parameter θ ,
of its ancestor pairs (Xl , parent X pa(l)) where Xl is an ancestor of X j . This contribution
is modulated by the error term PT

(
X j = v j | q

)
/P�

(
X j = v j | q

)
and by the probability

that X j is in the state v j if its ancestor Xl and X pa(l) are respectively in the states vl and
vpa(l).

The complexity of the update formula is:

O((# queries) × |V|3 × (# BN nodes) × (BN depth) × n)

where “# queries” is the number of queries in the training set, |V| is the number of states in
the BN (3 here), “# BN nodes” is the number of nodes in the BN, “BN depth” is the average
depth of assessed nodes in the BN and n is the number of local baseline models.
The implementation of the algorithm is straightforward and follows formula 7: we first loop
on the queries, then on each BN node for which we have an assessment for the query, then
on the different values of the latter variable, etc. All the parameters are updated in parallel.
Practically, the learning process is fast and the main computational resources are needed
for the evaluation of the BN performance.

Different gradient algorithms could be used here. For the experiments we used a simple
gradient descent algorithm where the learning rate ε was automatically set up by a line
search. We used the Armijo algorithm (Culioli 1994) which finds the largest epsilon ε(opt)

for which:

Q(� + ε∇Q(�)) ≤ Q(�) + ε(opt)α‖∇Q(�)‖2 (8)
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We used α = 0.3 for our experiments, we started with a value of 0.1 for ε(0), and divided
this value by 2 until the inequality (8) was verified. Parameters � were then updated to
�+ ε(opt)∇Q (�) . Note that training for a node only requires the knowledge of its ancestor
values which leads to a much faster training algorithm than for EM. The reason is that our CE
criterion is only defined on variables for which there is an assessment. With ML and EM, the
summation is over all variables in the BN whether their desired value is known (assessed)
or not.

7. Experiments

We describe below experiments performed on the INEX 2003 corpus. We divided the 30
queries of INEX 2003 into two sets of 15 queries each (sets A and B). The queries were
chosen at random for each set. Each set was used alternatively for training and test: training
was performed on A and test on B and vice versa.

Figures 6 and 7 respectively give train and test learning curves for the BN trained with
only one local baseline model (Okapi-D-T) and with two local baseline models (Okapi-D-P
and D-T). We will refer respectively to the former and the latter as BN-1 and BN-2. For
these figures, measures are averaged over sets A and B: training curves are an average of
training performance on A and on B, test curves are an average performance of test on
A (B being the training set) and on B (A being the training set). For each figure, x-axis
corresponds to gradient iterations and y-axis gives a normalised performance measure.
Different measures are plotted on each graph: “Error” corresponds to the CE value, RPhs

to the “highly specific” recall-precision average measure, ERR@ to the ERR criterion
measured for the 10 first retrieved doxels (ERR@10), for the first 50 doxels (ERR@50) and
averaged over 1500 retrieved doxels (ERR@avg). For both RPhs and ERR measures, the
plotted curve gives the ratio measure BN-1

measure Okapi-D-T for BN-1 and measure BN-2
max(measure Okapi-D-T, measure Okapi-D-P)

for BN-2. For the CE “Error” curve, the graph corresponds to the ratio CE error at t
CE error at t = 0 . For the

different measures, Okapi-D (either D-T or D-P) is used as a reference for measuring the
improvement brought by the BN. Any point above the y = 1 axis means an improvement
over the baseline Okapi-D. The normalisation shows the relative improvement with respect
to this baseline, irrespective of the measure scale. In each figure, the top graph gives the
measure values on the training set while the bottom graph gives the measures on the test
set. All these performances are relative to Okapi baseline. Therefore the BN “absolute”
performance for the task could be inferred from the absolute Okapi performance curves
from figure 4.

In all experiments, the error curve for CE clearly decreases for both train and test, meaning
that the algorithm actually optimises in an effective way the CE criterion. Note that this mean
error rapidly reaches a minimum—after about 1000 iterations in these experiments—while
the other measures still evolve for a while.

After initial fluctuations, the RPhs measure increases in all cases. For one local baseline
scorer (figure 6) the mean improvement is about 1.1 both for training and test. For two
local scorers (figure 7) this improvement reaches a value of about 1.2 and is more stable.
With the ERR measures, the figures are somewhat different for the one and two models
cases. For the former, ERR@50 shows a clear improvement over the baseline, ERR@avg
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in the text.
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has performance similar to the baseline model while ERR@10 is much lower. For the latter,
ERR@avg is slightly below the baseline, followed by ERR@50 and ERR@10 which is still
lower. BN-2 behaves poorly with respect to the ERR@ measures while it does pretty well
with RPhs. It is affected by a small subset of the queries which get low BN scores.

Before proceeding, let us recall that near matches are taken into account with ERR, while
they are not with RPhs. Curves for BN-1 (figure 6) indicates that BN-1 moves higher in
the retrieved list highly specific elements (RPhs curve) and also near matches (ERR@50).
For BN-2 the situation is different: as for BN-1, BN-2 also ranks higher highly specific
elements but some of the near matches retrieved by Okapi are ranked lower by this BN.

Globally, there is a good agreement between learning and test curves for all measures.
This is a positive indication on the behaviour of the algorithm: the algorithm learns and
generalises correctly according to what has been learnt. The interpretation of SIR error
measures is less trivial since they differ from the training criterion and since each measure
reflects only partial aspects of the SIR goal. RPhs is closest to the training criterion since
highly specific (Sp3) doxels are highly rewarded with the INEX mapping chosen here
(figure 5). RPhs increases in all cases when training proceeds. The correspondence between
ERR measure and CE is less direct.

In order to provide more insight into the behaviour of the models, we have plotted different
measures of the performance variability with respect to queries. On figure 8 (measure RPhs)
and figure 9 (measure ERR@50) the ratios of the performance of BNs over baseline model(s)
after 9000 iterations are plotted for each of the 30 queries. Performance for both sets A and
B appear on the same figure: the 15 training (test) scores for set A and the 15 training (test)
scores for set B are displayed together. There is then one statistic for a given triple (query,
BN, measure) and the numbers on the plots identify individual queries. It can be noted that
for all plots, performance for most individual queries are similar whether they belong to the
training or test set which means that there is a relative robustness in the learning process.
Said otherwise, whatever the training set is, the BN(s) learn similar statistics. The variability
between the individual query scores is relatively high. For RPhs a few queries get lower
scores with BN(s) and a larger number get a higher score. For ERR@50, this is somewhat
similar but many query scores lie around the y = 1 axis. This information is plotted in a
more synthetic way using boxplots.9 On figure 8 (RPhs), the median line is above 1 and
reaches 2 for BN-2. Roughly speaking for all graphs of figure 8, about 65 % of the BN
scores are above that of the Okapi baseline. The dispersion for values lower than the median
for BN-2 is higher than for values higher than the median. For ERR@50, the median value
is near 1 in all cases. Extreme points are relatively far from the median. The general figures
are similar for both BN-1 and BN-2. On figure 9 (bottom), it can be seen that two extreme
points (labelled 98 and 100) are zero. They correspond to queries with very low Okapi and
BN scores, for which ERR@50 for BNs is 0.

We took a closer look at these two queries. Both share a common assessment “style” with
many highly specific and highly relevant nested elements. For example, a section, one of
its subsections and a paragraph of the latter were labelled highly specific and exhaustive.
This is in contrast for instance with query 126 which has been assessed by the authors and
for which the BN performs always better than the baseline. The conceptualisation of SIR is
clearly not the same for the two assessors. Note that instructions for INEX are in accordance
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Figure 9. Plots correspond to ERR@50 ratio between the BN model and Okapi-D computed for all 30 individual
queries after 9000 iterations of the learning algorithm (the ratios were bounded by 0.01 and 100) since for two
queries (query 98 and 100) the ratio was 0 for BN-2 and above 100 for query 121 and BN-1. Numbers on the
x-axis for the plots correspond to the query identifiers used in INEX (integers between 90 and 125). The same
information appears in a more synthetic way with the boxplots computed over all ratio values.
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with the view developed in this paper (no nested highly specific highly exhaustive doxels
with the same exhaustivity). Learning will depend on the quality of the assessments and BN
statistics will be learnt in accordance with the regularities observed in the majority of the
assessments. Assessment variability which is still high for this collection causes variability
in BNs scores.

We also performed a paired Student t-test for comparing Okapi and BN scores after
9000 learning iterations. With a 90% confidence interval, ERR@50 for BN-1 outperforms
Okapi-D-T. For the other measures or models, there was no significant improvement at 90%.
Paired t-test results should however be taken with care here since the number of queries
is relatively small. In order to get a significant difference, results ought to be particularly
stable.

To summarise the results obtained with these experiments, the proposed discriminative
criterion is effective for training the BN model. The RPhs measure is increased by learning
in all cases, although the small number of queries and the variability of the scores do not
allow matching the t-test. The BN performance significantly outperformed the baseline
model with one of the proposed model according to the measure ERR@50 with a 90%
confidence level. Performance does not significantly differ when using one or two baselines
models except on a few queries.

8. Conclusion

We have described a new model for performing IR on structured documents. It is based
on BN whose conditional probability functions are learnt from data. The training criterion
is a discriminant criterion: cross-entropy between desired and target distributions of node
values. The learning algorithm is an iterative gradient descent. We have focused here on the
parameter learning problem for these models which appeared to be a non trivial machine
learning problem. We have shown on the INEX collection that it was possible to improve
retrieval performance through learning. More investigations are however still needed for
the robust training of these models on large collections like INEX. However, these results
are encouraging since traditional BN learning via Estimation Maximisation did not allow
this type of performance increase.

Besides ranking doxels in their structural context and integrating different sources of
evidence, the BN framework has additional advantages: it can be used in distributed IR,
as we only need the score of the parent element in order to compute the score of any of
its descendants; it can use simultaneously different baseline models: we can therefore use
specific models for non textual media (image, sound, etc.) as another source of evidence.
Another advantage of the BN framework is that we have more information on the relevance
of each doxel than with any other model tested at INEX: we have a score which is composed
of three probabilities (exact, too big and irrelevant) that can be translated back onto the INEX
scale and that can also be used to filter the resulting list so as to avoid doxel overlap.

There are still several directions to explore with this model. The training criterion should
better reflect the ranking task than the classification criterion which was used here. Pre-
liminary small scale experiments with ranking criteria led to promising results, but this
has still to be explored exhaustively. New evaluation criteria, better suited to SIR will
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also influence the choice of a training criterion and the evaluation of SIR systems. The
robustness of training algorithms with respect to the different training conditions (train-
ing corpus, number and quality of the assessments, number of queries needed to reach a
reasonable performance) will also need further experiments. In order to get better targets
for training, assessments should be pre-processed in order to remove incoherent assess-
ments and the mapping from assessments to distributions should depend on neighbouring
assessments. The method will have to be validated on other structured corpora when they
will become available. The training algorithms themselves have to be refined for increas-
ing the convergence speed and the robustness of training. The BN model should benefit
from using different local baseline scorers with different behaviours. We only performed
preliminary experiments in this direction using two local scorers. This also needs further
investigations.

Appendix

We give here the derivation of the updating formula (7) for learning the parameters of the BN.
Notations are the same as in Section 6. The parameter to be updated is θ . In the following,
only BN variables associated to doxels are considered. Let us assume that for any node j the
ancestors of X j are the variables Xl where l ∈ anc( j) . We will denote pa(k) the parent of
the node k and ANC( j) the set of ancestors including j, that is ANC( j) = anc( j) ∪ { j}.
We will also use the abreviation v∗ for X∗ = v∗ within probabilities. The P� derivative
in (6) decomposes as:

∂ P�(X j = v j | q)

∂θ
= ∂

∂θ

∑
vl∈V,l∈anc( j)

∏
k∈ANC( j)
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(
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)

=
∑
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∑
l∈ANC( j)

( ∏
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)
∂ P�(vl | vpa(l),q)

∂θ
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(
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)

=
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∑
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∂θ
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∣∣ vpa(l), q
) ∑
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l∈anc( j)\{l,pa(l)}

∏
k∈ANC( j)
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(
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)

=
∑

l∈ANC( j)

∑
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∂ P�(vl | vpa(l),q)
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(
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) P(v j , vl , vpa(l) | q) (9)

And using Eq. (2), we get:

∂ P�

(
Xl = vl

∣∣ Xl = vpa(l)
)

∂θ
=

∑
m1,... ,mn

∂ FX
(
�, vl , vpa(l), m1, . . . , mn

)
∂θ

×
∏n

s=1
P(Ms(X ) = ms | q) (10)
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with

∂ FX (�, vl , vm, m1, . . . , mn)

∂θi(c,wl ,wm ,m ′
1,... ,m

′
n )

=




0 if cX 
= c ∨ wm 
= vm ∨ mi 
= m ′
i

FX (�, vl , vm, m1, . . . , mn)
×(1 − FX (�, vl , vm, m1, . . . , mn)) if wl = vl

−FX (�, vl , vm, m1 . . . mn)
×FX (�, wl , vm, m1, . . . , mn) else

(11)

The updating formula for θ is then easily obtained from (9), (10) and (11). The probability
P�(X j = v j , Xl = vl , X pa(l) = vpa(l) | q) can be easily computed by our BN.

Acknowledgment

This work was supported in part by the IST Programme of the European Community, under
the PASCAL Network of Excellence, IST-2002-506778. This publication only reflects the
authors’ views.

Notes

1. http://inex.is.informatik.uni-duisburg.de
2. ACM SIGIR 200 Workshop on XML and Information Retrieval, Athens, Greece, July 2000.
3. Workshop on XML and Information Retrieval, Tampere, Finland, August 2002.
4. Joint workshops on XML, Information Retrieval and Databases, Sheffield, UK, 2004.
5. More precisely, the probability that the document represents the query.
6. Only highly specific elements are taken into account with this measure; this measure is simply the classical

recall-precision curve where relevant documents are highly specific doxels.
7. We used the default values for the different Okapi parameters (k3 is 1.2, k3 is 7 and b is 0.75).
8. These parameters were estimated on INEX 2002, i.e. on a corpus different from the INEX 2003 corpus which

has been used in our experiments described in Section 7.
9. The boxplots synthesise a set of real values using 5 values: the min value, the three quartiles and the max value.

The five vertical lines from left to right (figures 8 and 9) correspond respectively to these 5 values. The two
extreme lines are min and max, the box lines are the quartiles. We used here modified boxplots where outliers
appear separately and not in the boxplot.
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