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ABSTRACT
Mining user web search activity potentially has a broad range of
applications including web result pre-fetching, automatic search
query reformulation, click spam detection, estimation of document
relevance and prediction of user satisfaction. This analysis is diffi-
cult because the data recorded by search engines while users inter-
act with them, although abundant, is very noisy. In this work, we
explore the utility of mining search behavior of users, represented
by observed variables including the time the user spends on the
page, and whether the user reformulated his or her query. As a case
study, we examine the contribution this data makes to predicting
the relevance of a document in the absence of document content
models. To this end, we first propose a method for grouping the
interactions of a particular user according to the different tasks he
or she undertakes. With each task corresponding to a distinct infor-
mation need, we then propose a Bayesian Network to holistically
model these interactions. The aim is to identify distinct patterns of
search behaviors. Finally, we join these patterns to a list of custom
features and we use gradient boosted decision trees to predict the
relevance of a set of query document pairs for which we have rele-
vance assessments. The experimental results confirm the potential
of our model, with significant improvements in precision for pre-
dicting the relevance of documents based on a model of the user’s
search and click behavior, over a baseline model using only click
and query features, with no Bayesian Network input.
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1. INTRODUCTION
There are large sources of implicit information about user web

search interests in the Search Engine logs that record user actions.
In particular, search engines keep records of their interaction with
users in click-through logs, which record chiefly a temporary user
id (through login or cookies), the queries issued by the user, the
results returned by the engine and the resulting user clicks.

User activity models that exploit this data have been proposed in
a variety of contexts. Most focus on a specific goal, such as estimat-
ing the attractiveness (the perceived relevance) of a search result
snippet for a given information need [7] or on predicting the next
action a user will perform [1] in order to allow, for example, page
result pre-fetching if the model predicts the user will want more
search results. Other authors tackle the problem of clustering user
activity to present a synthesis of the observed user behavior [20].
Our work differs in that we build generic models of user activity
using unsupervised Bayesian Networks, that can then be applied to
solve a specific task.

Schematically, when users interact with a search engine with a
specific task in mind, they issue one or more queries until they are
satisfied with the results, or until they give up. They may then go
on to researching a new task, or leave the search engine. We are
interested in the sequence of queries related to a single query intent
or information need. Following Radlinski and Joachims [15], we
name these sequences query chains. To the best of our knowledge,
there is no work that has proposed a generative holistic model of
all user-interactions – from search to clicks – that produce chains
of queries.

Query chains are an important source of information, since they
span the whole search process undertaken by a user: It is a high
level goal. If we wish to predict user satisfaction, and hence have
a more accurate measurement of the true performance of a search
engine, it would have to be done at this level of granularity, as the
outcome of the whole process reflects the satisfaction of the user
more accurately than individual clicks made on a single page of
search results returned for a single query. The model we present in
this paper is an attempt to build a holistic clustering model at the
query chain level which is a first step towards this goal.

In order to validate our model, we must choose a task that can
show that some useful information is learned by the model. We
chose one which is at the core of web search, the prediction of doc-
ument relevance, since modern web search engines learn to rank
using relevance assessments. Predicting relevance is thus of great



importance since the amount of information that can be collected
from user search interactions is orders of magnitudes larger than
what can be collected by asking judges. Most approaches [15, 7]
using click log data estimate the attractiveness of a search result
and not the intrinsic document relevance. In our dataset, in 3% of
the cases the user clicked on a non relevant document: This means
that finding which of the clicked documents were non-relevant is a
much harder task than finding the relevant ones. Even if we aggre-
gate, we find that only 35% of the documents that were clicked at
least once by a user were judged as not relevant in editorial assess-
ments. This high percentage of relevant documents is due to the
fact that users do not click at random, but most of the time click on
relevant links because of the abstract and the title of the document
in the result list. Using more complex user models, that take into
account the full sequence of user actions, is needed to distinguish
attractive from non-relevant documents.

Another advantage of using complex user models in the task of
predicting document relevance is that relevance of documents that
were clicked a single time for a single query can be estimated with
greater accuracy than with other models, since we employ a more
complete description of what the user did (how much time they
spent reading a search result document, whether they clicked on
another document afterwards, etc).

It is difficult to compare our results with previous work, however,
since none of them try to predict document relevance from only one
interaction with the user, and without using information like the
document clickthrough rate. Predicting from few user interactions
(ideally only one) is important since the distribution of the number
of times a query appears is very skewed, with a long tail: A few
queries occur many times, but a very large number occur just once.
In a two month log (described next section), we observe that 73%
of distinct queries (30% of the total query volume) were issued a
single time. If there is just one click and one session, then it is hard
to know whether the document was relevant or not, let alone if the
search was successful for the user, unless the click is understood in
the larger context of the query chain it belongs to. Even in cases
where we have only one occurence of a query, estimating how well
the user was satisfied is still an issue for evaluation purposes, or to
build up a user profile. It is hence important to be able to use such
data.

Our contributions include:
1. In Section 2, we present a simple methodology for grouping

queries into query chains, based on search logs and in the absence
of any hand-labeled data. Query chains are sequence of queries
related to a single query intent or information need (for example,
finding information about camping sites in Paris), and are different
from more high level goals (like planning holidays in Paris). We
define and experimentally determine a series of thresholds that are
used to group together sequences of user actions.

2. To analyze this generated data, our main proposal is a tree-
based layered Bayesian Network (BN) framework where latent vari-
ables are designed to explain a subset of user actions (Section 3).
Each layer corresponds to a given granularity of the search pro-
cess (query chain level, single query session level, search results
inspection process, and document analysis process). Our model
tries to predict observations (time after a click before the next ac-
tion, number of queries, number of web search result pages viewed,
etc.) that we extract from the logs and process as described in the
above point. This model clusters user chains since it can be used to
assign to a series of actions a single label (the most probable one).

3. To validate our approach (steps 1 and 2), we classify clicks
as being on relevant and irrelevant documents for a given query.
We use a standard machine learning technique, Gradient Boosted

Trees [8], to learn from features extracted from the BN and we
compare it to a baseline model (Section 4). Note that the aim of
these experiments was to validate the BN model, not to obtain the
best relevance prediction – more sophisticated models integrating
information from various sources would be necessary to achieve
this task. Another point is that this validation confirms that the
whole process (building query chains and learning the BN model)
makes sense.

We believe the BN model can be easily extended and used in a
variety of web search settings, including predicting user satisfac-
tion or helping to detect click spam. We compare and situate our
work with respect to related ones at the end of the article (Sec-
tion 5).

2. CONSTRUCTING CHAINS
In this section, we present a methodology for constructing query

chains from the information associated with each user interactions
with the search engine such as examining a page of search results
or clicking on a document url. Previous work in the literature rely
on a set of manually labeled data, at least to train a model, or on
simple heuristics (30 minutes timeout). In contrast, our approach is
fully automatic in the sense that it is based on parameters estimated
from the data.

We make use of a sample of click-through logs from a commer-
cial search engine over a period of 57 days. All data was treated in
accordance with the search engine’s privacy policy, and no attempts
were made to match anonymous identifiers to real users. Queries
were normalized lexically but not semantically: We removed extra
spaces, and added extra quotes when missing. We ensured that all
the transformations preserved the result order in the search engine.

The search logs are lists of simple events, each being a tuple
made of the temporary user id, the time, the query and the ac-
tion (either viewing a page of results, or clicking on a document).
In this section, we will make use of Figure 1 where each point on
line (1) represents one such event for the same temporary anony-
mous user id, and where the x-axis represents the time. We now
proceed to describe each of the three steps that we took to construct
the query chains.

Atomic sessions and query chains. We first construct atomic
sessions, which are all the events associated with the same user id
and the same query string (i.e. exactly the same sequence of char-
acters) within a reasonable time frame: After a given amount of
time we assume the user has started a new atomic session, even
though the query remains the same. Line (2) of Figure 1 shows the
events grouped by matching query strings. The construction of an
atomic user session depends only on one parameter, the time frame
span. We used a timeout of thirty minutes. This threshold is quite
standard, even though others, ranging from 5 to 120 minutes, have
been proposed [19].

From the 57 days logs, we removed sessions containing one or
more clicks on ads and empty sessions (sessions without a click) in
order to get a more homogeneous dataset. This resulted in about 65
million atomic sessions. We then built chains out of these atomic
sessions. The whole process is illustrated in Figure 1.

Here we give a high-level description of our method for con-
structing query chains, with details in the sub-sections below. We
start by concatenating all the atomic sessions for each user, gen-
erating a single initial query chain per user1. We compute the

1For simplicity, we drop overlapping sessions although more so-
phisticated models could take into account the various chain op-
tions to cope with overlap and/or interleaving.
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Figure 1: The four steps used to build query chains. Line (1)
is a set of events for which the exact associated query string is
shown. Line (2) shows the atomic sessions, composed of sets
of events of matching query strings (within a 30 minute thresh-
old), while subsequent lines shows the sequence of cuts we make
to obtain query chains (time and then similarity).

time delta, i.e. the time difference between two consecutive ac-
tions (click, page-view) of an atomic session and we analyze their
distribution over all users. We then decide on a global time thresh-
old. This gives us a set of smaller chains for each user. We com-
pute a similarity measure between any two adjacent atomic session
query strings inside a chain. Again, from this data we decide on
a global query similarity threshold and break up the chains into
smaller ones. This process cannot detect interleaved sessions which
end up as smaller, disjoint chains.

Time threshold. To set the time threshold we computed the inter-
session time distribution on our extracted atomic sessions, that is
the time between the last action of a session and the first action
of the next session. While this was not verified, we make the in-
tuitive hypothesis that the time between two atomic sessions will
be significantly shorter if these are related to the same information
need. This suggests that the observed inter-session time is the re-
sult of combining two distributions. Upon visual examination, the
empirical time difference distribution seems to be composed of a
log-normal2 distribution followed by a power-law. It seems nat-
ural to associate the two distributions to the time between related
sessions and unrelated sessions respectively.

We fit the observations to a mixture of these two distributions
controlled by a logit function p(Z = new chain|∆, a, b) =

`
1 + ea∆+b

´−1

that decides which distribution originated the observation, where ∆
is the time difference between the two sessions, and a and b are two
parameters to set:

p(∆; a, b, α, µ, σ) = p(z 6= new chain|∆, a, b)LN (∆; µ, σ)

+ p(z = new chain|∆, a, b)PL(∆; α)

where LN is the log-normal distribution and PL is the power law
distribution. Using the EM procedure to fit the parameters, we ob-
tain the following estimates for the alpha and log-normal distribu-
tions: α ' 1.11, µ ' 3.44, and σ ' 1.12.

We use a threshold that covers 99% of the log-normal distribu-
tion: p (∆ ≤ threshold |∆ ∼ LN (µ, σ)) = 0.99. This leads to a
time delta of 7 minutes and 10 seconds. These results are consistent
with the findings of [11], where after a 20 minutes query interval
(and not action interval as in our analysis), most of the searches cor-
respond to new query intents. Line (3) of Figure 1 shows how the

2We also tried a Poisson distribution, but this did not fit the data
well.

last atomic session “world cup” gets disconnected from the chain
based on its time delta with the previous session.

Similarity threshold. Using this time threshold, we got a first
set of candidate chains. We observed that inside some of these
chains, the queries correspond to different intents. In order to iden-
tify and segment such chains automatically, we estimated the sim-
ilarity between the different query strings of adjacent atomic ses-
sions. We computed three kinds of similarity measures, one sym-
metric and two asymmetric: (i) Symmetric measure: The query
and its potential reformulation are transformed into two vectors
of character n-grams frequencies of their query strings. The co-
sine between these two vectors is then used as a proximity mea-
sure. (ii) Two asymmetric measures: The degree of inclusion of the
potential reformulation into the original query and its counterpart,
the degree of inclusion of the original query into the reformula-
tion. The degree of inclusion is computed as the probability that
a character n-gram appearing in one query appears in the other.For
simplicity and reliability, we did not perform any query processing,
and we worked with character tri-grams. For example, “abc d” is
composed of the tri-grams “abc”, “bc ” and “c d” (including
spaces). This strategy is not perfect: Some chains can be incor-
rectly broken (eg. “computer shop” and “order laptop”) and some
can be incorrectly kept (e.g. “New York restaurants” and “New
York hotels”). However, this would need semantic query process-
ing and we chose to ignore this issue.

When plotting the value of the cumulative proportion of adjacent
pairs of queries joined in the same chain, it can be observed that
there is no precise cut point: There is an almost linear relationship
between the percentage of query pairs and the maximum similarity
value: The former ranges from 40% of pairs to 100% while the
latter ranges from 0 to 1. We hence chose the thresholds such that
50% of atomic session pairs are included for any of the similarity
thresholds. In practice, we used the following thresholds: 0.43 for
the cosine, 0.36 for the n-gram inclusion of the new into the old
query, and 0.43 for the n-gram inclusion of the old query into the
new. We cut the chain if all the similarity values were below the
indicated thresholds.

Generated chains. Overall our method produced 1.2 queries (stan-
dard deviation 0.6) per chain which is quite different from the 3.27
queries per chain reported in [11] and may be an artifact of our ses-
sion chunking process. However, the sample used in [11] was
small (4690 queries) and the logs we work with most probably
contain a larger proportion of navigational or bookmark queries.
Broder [3] estimates that around 50% of all queries are naviga-
tional or transactional queries that typically involve a single search
followed by a few clicks (typically one), and Teevan et al. [19]
found that around 24-29% of queries repeated over a long period
of time could be considered navigational in that they result in a sin-
gle repeated click. In order to simultaneously limit the complexity
of the models and filter out spam, we filtered out chains contain-
ing more than an arbitrary threshold of 50 actions within a chain.
This threshold is sufficiently high to capture most of the simple to
complex user activities. This leaves us with 19,196,791 chains. In
Sections 3 and 4 we will look at how useful these chains are for
predicting document relevance.

3. BAYESIAN NETWORK MODEL
User interactions with a search engine seems to fit particularly

well the “Test - Operate - Test - Exit” cognitive model [12]. The
basic idea is that as humans have a limited short time memory, they



tend to group their actions in a hierarchy of goals: To solve a prob-
lem, they use an iterative strategy and move from a goal to one of
its sub goals until their purposes are achieved. In our context, the
goal of a user is to satisfy their information need. The goal hier-
archy is easy to create since the process is heavily constrained by
the actual search technology: A user can issue a new search string,
look at another page of results or click on a document to inspect
its content. At each stage, the user can either return to a higher
level goal, perform another task within the same goal or perform
a lower level goal. For instance, after inspecting a result page the
user might issue a modified query (higher level goal), look at an-
other page (same level) or click on a document to inspect it (lower
level goal). The model assumes that a goal is completed before the
user starts a new one, implying this model does not account for all
possible behaviors as for example a user who opens several tabs in
a browser at each stage. A wiser filtering strategy at a chain level
would be better, but was not performed, as we believe the amount
of data is sufficient to ignore this problem3, which is at least the
case for practical situations as predicting relevance as shown in the
next section.

Ideally we would like to cluster the different types of behavior,
and assign a label to each of the goals undertaken by the user, as
for example “in that page, the user consulted some documents but
did not find anything interesting” for a page level goal. Given such
labels, it would be easy to classify documents as relevant/not rel-
evant, or to gain insight on the user satisfaction. In practice, it is
not realistic to build such categories by hand because there is a lot
of variability in the search patterns [20] and because it is difficult
for humans to identify patterns in data of such high dimensionality.
Using readily available clusterization algorithms is not straightfor-
ward as they generally require that the distance between any two
sessions be defined. This is difficult in our case as search sessions
are very variable in length and structure.

The layered Bayesian Network (BN) model we propose fits nat-
urally the hierarchical nature of the user actions, and offers a mean
to clusterize sequences of various granularities corresponding to
the different goal levels. Our main objective is to associate a la-
bel (a state of a random variable in the BN formalism) with the
set of user actions at various goal levels – chain, atomic session,
page of results and URL examination. Each goal label should be a
good summary of the characteristics of the associated actions, like
the time spent on a page, the overall relevance, or (better) the user
satisfaction. These labels can in turn be used to predict these vari-
ables as explained in the next section, or to predict future actions
like whether the user will rephrase his or her query. Moreover, by
combining various levels of the goal hierarchy, the model provides
a very natural way to capture the context around a user click at the
different goal levels, from the label of the URL examination goal
to the label of the chain goal.

BNs are a probabilistic framework where conditional indepen-
dence relationships between random variables are exploited, in or-
der to simplify or/and to model decision problems. These relation-
ships are determined by an acyclic graph where a variable is inde-
pendant of its non-descendants (every node that cannot be reached
following the arrows) given its parent(s). The parameters of the
network specify how to compute conditional probabilities of any
variable given the state of its parent(s) in the graph. The structure
and the parameters are enough to completly define the probability
distribution over the random variables.

3Note that while for clustering that might not be a problem, not
filtering surely has more impact on the relevance prediction (next
section) task we performed.

In our framework, the structure of the BN is determined by the
search session and is not learned, contrarily to the numerical rela-
tionships between the labels of the different goals, and between the
goals and session observations (e.g. number of clicks) which are
discovered automatically at training time. At the click level, the BN
could discover that clicks on non relevant documents are associated
with a shorter time delta for example. These learned parameters can
in turn be used to analyze any new session, thereby enabling to use
the model to predict the labels given the observations. Naturally,
the labels will be harder to interpret than this example suggests, but
they will nevertheless be useful and interpretable to a certain extent
as underlined in Section 3.3.

3.1 Network structure: Observed and Latent
variables and their relationships

Before going into model details, let us first give two examples.
In a first scenario, a user issues a query, looks at the first page of
results, then at the second page, clicks on a first document on the
second page of results, 3 seconds later on a second document on
the same page of results, 5 seconds later requests a third page of
results, rewrites the query, looks at the first page of results for the
second query and then abandons the search. Intuitively, the user
was not satisfied and the documents which were clicked on were
(probably) not relevant. Note that considering the click as relevance
feedback would lead to an incorrect conclusion. In the second sce-
nario, the user issues a search, clicks on one document and never
returns. From this second session we could infer that the document
was relevant and the user satisfied their information need. Read-
ers can refer to Figure 2 for a graphical representation of the two
sessions. This example is also an illustration of the Bayesian Net-
work structure that will be described later, but for the moment the
important part of the figure is the structure (in terms of goals and
subgoals), the different observations, and the states (also refered
to as goal type or label) associated with the different goals (boxed
numbers). It is obvious that even in such a simple example, there is
no certainty about the real relevance, and that we can only estimate
probabilities of being relevant.

At the click level, we can first try to categorize the clicks de-
pending on various factors like whether it was done shortly after
the user saw the search results, whether it was a new click or how
much time the user spent analyzing the linked document for ex-
ample. The click state represents only local information, and it is
difficult to draw conclusions from it alone. We could consider two
classes, one for clicks occuring shortly after a page view (type 1)
and those occuring after a given amount of time, in our case after
the inspection of another document (type 2). The states associated
to higher level goals effectively define categories of subgoals and
click sequences and as such are more informative than the statis-
tics we used to describe clicks: In Figure 2 we have three types of
pages: Pages without clicks (page type 1), pages with a succession
of state 1 and 2 clicks (page type 2), and pages with one click of
type 1 (page type 3). We can then climb one level at a time in the
hierarchy and associate three states to searches corresponding each
to a different sequence of page goals, and associate two states to
the chains, effectively defining two different types of atomic search
sequences.

The hierarchy of states provides a context to the individual clicks
and permits to distinguish the “bad” clicks of search (a) in Figure 2
from the “good” one in search (b). We expect that after evaluation
of the network the most probable hierarchy of states associated with
search (a) and (b) will be different.

In the BN network, we don’t expect the states to be fully deter-
mined by the observations. Rather the distribution over the states



of the different latent goal variables will depend upon the network
structure and the observations. Said otherwise, the different states
of the latent goal random variables define as many soft clusters
of the actions undertaken by the user within that goal. The next
list summarizes the different types of latent random variables (i.e.
the goal labels) and the observed random variables associated to
them. For all but the click goal at the leaves of the hierarchy, the
states also summarizes the sequence of nested sub-goals directly
following them in the list: Chain is the root variable and represents
the query chain type. The associated observation is the number of
searches issued during the chain. Search is a sub-goal at the level
of an atomic query session. The observation that we retain at this
level is the number of pages of search results requested by the user
for this search. Page represents the behavior of the user on that
search result page. The observation is the number of clicks the user
performed on the page. Click is associated with the examination
of a document in the search result list. The observations associ-
ated with it are (1) the time spent examining the document that is
clicked on (“delta”), (2) whether the user already clicked earlier
on this document during the atomic session (“reclick”) and (3) the
relevance assessment of the document if available.

Other observations could be associated with each goal. For ex-
ample, we could attach to a Search goal the time spent by the user
looking at search result pages and clicking on documents. How-
ever, we choose to discard most of these ancillary observations to
ease the model learning. Moreover, some of the time spent on a
Search goal is already modeled as part of the Click goal, and this is
in fact learned by the BN as explained in the next section. Explor-
ing the best observations to associate to the different goals is future
work.

Now that both the latent (goals) and observed random variables
have been defined, we describe the structure of the networks. First,
we have to link the observations to their corresponding latent vari-
ables: We assume that observations are fully determined by the
goal they refer to (i.e. number of clicks for a page goal, number
of searches for a chain goal): For example, in Figure 2 the number
of different atomic searches is dependent on the chain state only.
Second, we have to link the goals between themselves. As stated
above, a distribution over the sequence of sub-goal states is associ-
ated with each goal state. We model this by imposing a dependence
of the goal on all the subgoals (vertical arrows between two la-
tent variables) and a first-order dependence of one of the sub-goals
onto the next sub-goal (corresponding to the horizontal arrows in
the depicted BN). We could use higher order dependence between
different subgoals at a same hierarchical level, but as we want to
analyze millions of search sessions we choose the common first-
order dependence used in many other graphical models to keep the
inference tractable.

Note that the particular structure we chose limits the complex-
ity: Once the state of a latent variable associated with a goal G
is known, the states of its descendants is independent of its non-
descendant. This reflects our hypotheses. For instance, in Figure 2,
if we know the state of the second Page variable, then the state
of any other Page, of the Search variable and of the Chain vari-
able does not influence the states of the two variables (associated
to click goals) made on this page.

3.2 Conditional probabilities and learning
In the previous section, we gave a qualitative overview of our

BN model – we showed the structure of a BN with respect to any
possible query chain. In this section, we present it quantitatively,
that is, we discuss how to compute the actual probabilities and how

to learn them. We can define three sets of parameters that were
learned using the Expectation-Maximization (EM) algorithm [5].

The first set are the parameters encoding the Chain prior, that is
a prior probability distribution on chain states. These parameters
are distinct for any two chains and thus encodes the membership of
each chain to the different latent types.

The second are the parameters encoding the transition proba-
bility to a given goal, from a higher level goal state and from the
previous same level goal (if this latter exists within the same higher
level goal). One parameter is used for each possible configuration.
For instance, the probability θ

(search)
s,c,sp = p(search = s|chain =

c, previous search = sp) for the given latent states s, c and sp, is
the parameter corresponding to the transition from a Search of type
sp to a Search of type s within a Chain of type c. Note that we
have a distinct set of parameters for an action which is the first in
the sequence (i.e. first search in a chain, first page in a search, or
first click in a page). Finally, the third set of parameters encode
the generation of observations as for example, the number of clicks
given a page state. To model discrete variables with a finite num-
ber of states (click or re-click, relevant or not relevant) we use a
probability table: For example, we have a parameter θ

(reclic)
cl cor-

responding to the probability that the user re-clicked on a document
link given that the click state is cl. To model the number of clicks
and the time (discretized in second units), as they are not theoreti-
cally bounded, we use a Poisson distribution where the parameter λ
depends on the corresponding latent state. For example, we have a
parameter λ

(delta)
cl for the time to the next action distribution given

the click state cl. We chose the Poisson distribution because it is
simple and seems to match the empirical distribution of clicks and
time, which can both be thought of as rare events. The two last sets
of parameters are shared among all the constructed BNs ensuring
that the state of a given goal always represents the same underlying
observations and sequences of sub-goals.

The number of states for the different latent variables is not easy
to set and there are computation issues when analyzing millions of
sessions. The complexity of the BN grows quickly with the number
of possible parent/child configurations. If there are 10 states for
the Page variable and 5 for the Click variable, the complexity is
O(10× 5× 5) for Click related inference, and hence learning.

Experimental settings to learn parameters. We experi-
ment with 3 models with different numbers of latent states. The
two first models had 5 and 10 latent states at each level. The third
one had 5 latent states for all latent variables, except for Clicks
which had 20 states. We chose this last configuration because the
number of observation types at the click level is larger than at the
other levels, and also because we planned to validate the model on
relevance prediction: We believed that a model having more Click
states would be better suited, and this was indeed confirmed in the
experiments. We denote the different configurations BN 5-5, BN
10-10, and BN 5-20. Note that those choices were arbitrary and
made in order to have enough information so as to predict relevance
while limiting the model complexity.

As discussed in Section 2, we identify 19,196,791 chains over
our 57 day usage log sample. We divided the data randomly into
two subsets, T1 with 10,069,661 and T2 with 9,127,130 chains. We
also use a set of independently created manual relevance assess-
ments for 3,627 queries4 that we randomly divide into two roughly
equal subsets (R1 and R2) for the experiments. Since the logs con-
tain more queries than the dataset with relevant assessments does,

4This dataset is proprietary and was created by drawing a sample
of real user queries from the logs
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Figure 2: A Bayesian Network example, associated with one query chain. The user has issued two different queries. With respect to
the first one, the user has explored three result pages and made two clicks while viewing the second one. After the first (second) click,
the user has waited 3 (5) seconds before interacting another time with the search system. The boxed numbers represent one possible
labeling of the different states (in the case of a deterministic version of the BN model). Double circled variables are the observation
while single circled one are the latent states (goal labels) of the model. Eventually, white labels in black discs are used to distinguish
different set of parameters for computing the conditional probabilities in the network.

we are left with 624 and 574 assessed queries for R1 and R2 re-
spectively. Note in particular that since we are considering only
query-URL pairs which received a click, the majority were judged
relevant by human editors (97% of instances of query-URL pairs
and 65% of unique query-URL pairs).

We train each of the 3 BN configurations on four different sets
defined by the four possible combinations of T and R sets. The
relevance of a clicked document is not always available, even for a
query for which we have some relevance judgments; in those cases,
we did not set the relevance variable of the corresponding docu-
ment. Each training set contains one set of chains and one set of
relevance assessments. We use a fixed number of iterations (500)
for learning model parameters. This seems to be enough for the
convergence of the EM algorithm for all the different models (log
likelihood is stable after 100 iterations). Given the high number
of examples, we did not check over-tuning issues. As expected,
models with higher number of parameters achieve a higher average
likelihood. We also observed that BN 10-10 and BN 5-20 reach a
comparable data likelihood, although the latter is less complex (BN
5-20 turns out to be slightly better on average).

3.3 Analysis of learned BN
It is interesting to get insight on what the BN actually learns, and

if it corresponds to the hypotheses we formulated earlier. Present-
ing directly the probabilities learned by the models would not mean
much since the learning process is unsupervised and the labels do
not represent a predefined category. Hence, we rather attempt to
give an interpretation to what the three BN models learn.

We can compute expected values of observations which are mod-
eled in the BN – number of searches, pages or clicks, and the ex-
pected total time span – for a given chain or search state. Other
chain properties which are not directly modeled in the BN can
also be computed. For example, the expected query length (e.g.
in words) associated with a particular state C of the Chain vari-
able will be computed by taking the sum over all atomic sessions
a of the value “query-length(a)×p(chain state of a is C)”. This

can help interpreting the kind of behavior the different Chain states
summarize.

Chain latent states are distributed evenly, each accounting for
approximately the same number of observations (20% with 5 la-
tent states or 10% with 10 states). Although it could simply mean
that there is no information at this level, we believe that this might
signal that chain states might not yet be specialized enough so to
explain the observed behavior and that adding more states might be
beneficial. In future works we might learn a BN with a high num-
ber of latent states and use entropy over posteriors of latent variable
states to limit the complexity of the model [2].

Whatever the chain state, three search states are enough to ac-
count for 95% of the atomic sessions (search level) for the BN 5-5
and 5-20 configurations. Four states cover 95% when the BN 10-10
configuration is used. The remaining states each account for 1% or
less of the atomic sessions. This suggests that the number of search
latent states is enough to cluster the atomic sessions.

Interestingly, all configurations of the BN distinguish one partic-
ular type of Search behavior quite different from the others. It is
characterized by a fairly large number of clicks: Between 7 and 11
compared to 1 for other states, by a large number of page views,
between 4 and 7 pages compared to around 1 for other states, and a
time span of over 600 seconds while typical values for other states
vary between 40 and 90 seconds. On average, 1% of the query
sessions belong to this latent state. We conjecture that part of this
search behavior may correspond either to click spam, or to a kind of
browsing in which most of the documents returned are inspected.

Another finding is that the expected query length (in words),
while nearly constant with respect to the Chain states (around 2.16),
varies between 2.1 and 3.1 for the Search states for all the learned
BNs. This is interesting since the query length is not an observation
that we include while learning the BN parameters, and there was
no reason a priori to observe different lengths for different search
states. We might infer that there is a relationship between query
search length and the corresponding user search behavior. This is



indeed confirmed by the fact that long search time and large num-
ber of browsed result pages are associated with queries of around
2.55 words, slightly over the average of 2.16 words.

Our last observation regards time span. The time spans also
varies a lot between Chain states (from 71 seconds to 187 seconds)
which is quite surprising given that all the other values remains ap-
proximately stable (average query length and number of searches,
pages or clicks). This suggests that chains are capturing different
types of user behaviors – some of which maybe involve more or
less reading of the documents in the results, and that indeed, the
number of chain states is not big enough to capture all the informa-
tion provided by data.

4. PREDICTING RELEVANCE
As with any other clustering method, we have to evaluate the

quality of both the chain construction and the clustering indirectly.
The results we found show that our method is indeed capturing
extra information that could be used in many classification tasks
related to web search log analysis. In this section we show that the
information learned by the model can be used to predict document
relevance.

The basic idea is that a document belongs to a context defined –
from the most general to the most specific – by the Chain, Search,
Page and Click latent variables. We can also use the link we learned
between a Click state membership and its associated document rel-
evance. Typically we explore questions like “can we say something
about the relevance of a document that belongs 75% to Click state
1 and 25% to Click state 2, and 60% to Search state 1 and 40% of
Search state 5, etc.?” We can attempt to learn a mapping that takes
as input the degrees of membership (more precisely, the probabil-
ity that of a goal state given the observation) of the different latent
states associated with the context of a clicked document and as out-
put the relevance assessment for this document.

To this end we use a machine learning technique, gradient boosted
trees (GBT) described in [8]. GBT produces a series of weak clas-
sifiers (shallow decision trees) whose decisions are merged through
a linear combination. We chose this model since it does not neces-
sitate feature normalization and perform very well in general. We
also tried SVMs but their use was not straightforward, and did not
achieve a performance as good as that of boosted trees. A drawback
of GBT is that it does not capture well a continuous relationship
between the predicted variable and a factor, but we did not explore
other models since results were sufficiently good to validate our
model. We use the implementation of [16].

4.1 Features
We first define a baseline model that takes as input a set of fea-

tures unrelated to the BN, but linked with the observations the BNs
were fed with: The idea is to provide at least the same set of fea-
tures used by the BN to infer the distribution over the different
latent variables, so that the difference in performance can be at-
tributed to the BN. The more useful features we provide as a base-
line, the more confident we are on the BN usefulness. We now
describe the features that are used to classify a clicked document
within a search session.

Word features. For each word, we use one month of held-out
logs. The feature for a given query is the average value of the fea-
tures over the terms of the query. We use the following term fea-
tures: q(not_last) The number of time a term belonged to a click-
less atomic session followed by an atomic session with at least one
click. It is an indication of the ambiguity of a term since the user
had to reformulate their query. q(last_empty) The proportion of

time the user did not click in the the last atomic session with a
query containing the term. This is an indication of how effective
the term is at providing good search results. q(misspell) The max-
imum over all possible terms of the proportion of times the term
was substituted in the following query. This is a good indicator of a
misspell error. q(kept) The percentage of times the term was kept
in the next atomic session of a chain. This indicates whether the
keyword is useful for the query.

Other baseline features. We also use standard features that
are believed to be linked to the relevance of a document: We use
the time to next click (when available), the percentage of the whole
session time the user spent on the document, the total search time,
the position of the document in the ranking, the number of clicks
and the ratio of the click number to the total number of clicks (e.g.
the second click in a four click session has a 0.5 ratio).

BN features. To estimate the BN parameters for a document, the
observed variables are set to the values of the chain the document
belongs to, relevance assessments excluded. We then adjust the
probabilities of the chain to belong to a particular chain state in
order to maximize the likelihood of the observation – we use the
EM algorithm, fixing all parameters but the chain prior. We only
use information from the latent variables that were associated with
the context of the document whose relevance we wanted to predict.
For instance, in Figure 2, to predict the second click we would
use the information about the relevance variable below, and all the
variables appearing on the direct path from the Click variable and
the Chain variable. We then compute the following features: (i) The
distribution of probability of the variables “Relevance”, “Click”,
“Page”, “Search” and “Chain”. For example, at the Click level,
we have a feature p(Click state is i|observations) for each possible
state i of the variable. (ii) The set of latent variable states that
maximize the likelihood over the whole chain session (note that we
again only use the states of the variables that are “ancestors” of the
click in the goal hierarchy):

C∗ = argmax
C∈latent statesp(C ∧ chain observations)

We also use the likelihood of the observation and the likelihood
of the ML configuration, that is p(chain observations) and p(chain
observations ∧C∗). These two features serve as a measure of con-
fidence over the previous BN features, and can be useful for a ma-
chine learning model based on decision trees. The interest of using
only the information on the ancestors of a click goal in the goal hi-
erarchy is that we have a fixed set of features that characterizes the
context of a click within a query chain. This vector of features can
be directly used to feed a standard machine learning algorithm.

4.2 Results
The results we report are for the following settings of GBT. The

maximum tree depth in the decision trees is set to 4 for BN-based
models and 8 for the baseline-based. The difference in depth is ex-
pected to counterbalance the fact that BN provides more integrated
information, and some of which can be deduced from the baseline
model features albeit with a deeper tree depth. We experimented
with other depths, but those were sufficient to stabilize the results
for both the BN and the baseline models. Each of the four differ-
ent training sets is composed of an average of 630,000 examples.
For practical reasons, we first subsample to 100,000 the number of
examples used for training, keeping all the negative (non-relevant)
examples. We use 65% of the training set for learning and the re-
maining 35% to control for the generalization error. The model
is trained with the Bernoulli cost function, which corresponds to a
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Figure 3: Precision-recall for non relevant documents (aver-
aged over the four instances of each model). The proportion of
non relevant document among all the documents is .02 for the
top graph and .35 for the bottom one. The top graph plots the
classifier performance when features associated to a single click
are used, while the “aggregated” graph reports them when the
score of a document for a query is averaged over all the classi-
fier scores.

logistic regression. We also tried the AdaBoost cost function (to
learn to rank documents according to their relevance), but it did not
perform better. We use a maximum of 15,000 trees and a learning
step of 0.01 in agreement with the guidelines [16]. The number of
trees is sufficient, since the error on the training set was stable and
the generalization error began to rise before the 15,000 tree limit.

We train each model on a dataset composed of one of the logs
(say T1) and one of the relevance assessments sets (say R1) and we
test on the complement dataset: This would be T2 and R2 in this
example. This gives us 4 possible train/test combinations per model
with distinct sessions and judged queries. The complete procedure
is: (1) Learn the BN parameters using T1 and R1. (2) For each
document of interest in T1, generate the features by maximizing the
likelihood of the associated chain with respect to the chain classes
without using any relevance assessment. (3) Learn the GBT model
that maps the baseline and BN features of a query-document pair in
T1 to their associated relevance assessments in R1. (4) Repeat step
2, but this time using T2. (5) Use the GBT model to predict R2 and
test the performance.

We rank over half a million observations (for each of the four test
sets) of the query-URL pairs (each corresponding to one click on an
assessed document) and plot the precision-recall graphs for non rel-
evant documents since these documents are much more rare in our
relevance assessments set (3% in average); plotting precision-recall

graphs for relevant documents would not be as informative since it
would produce a near perfect curve. Results reported in Figure 3-
top are the interpolated precision-recall curves averaged over the
four possible train/test combinations for each different model.

Since a single query-document couple can occur more than once
in our data, aggregation techniques to predict relevance from more
than one observation are needed so we obtain a single prediction
for any query-document pair. We experimented with a basic one,
where the score of a pair is given by the mean of its scores; this
corresponds to a simple aggregation model where we consider pre-
dictions to come from independent and equally important predic-
tors. More sophisticated techniques on these cases would be more
adapted. On Figure 3-bottom, we rank distinct (query, URL) pairs
using their mean score as computed by the different models, and
plot the interpolated precision-recall curve averaged over the four
datasets.

Quite intuitively, in both cases the best performing model is BN
5-20, followed by BN 10-10 and BN 5-5, and finally the baseline
model. The BN 5-20 model is more stable than the others. The
difference between BN 5-20 and the baseline, in terms of stability
and performance, is enough to conclude that there is a real gain in
using the information from the BN. Another conclusion is that the
number of latent states is an important issue.

Looking at the importance of the different features is also infor-
mative. We used the relative influence extended by [8] for boosted
estimates, approximated as the improvement on the square error as
a result of a split in the node(s) using this feature. Figure 4 reports
the values for the different models. Note that the relative influ-
ences of all the features for one given model are normalized and
sum to one. For the baseline model, the features associated with
the Bayesian networks are absent and hence have zero influence.

Among the different non BN features, the time to next click and
search time are the most important. Regarding the latter, we believe
it is in relation with the task difficulty and hence the relevance of
documents. One feature used both by non BN and BN based mod-
els, is the misspell feature. It suggests that wrongly spelled queries
are connected to worse results.

Among the different BN model configurations, we see that the
influence of the chain class distribution is higher when the BN has
10 states for the Chain variable than when it has only 5 (BN Chain
variable in Figure 4). The Click variable is more heavily called for
contribution by models having more latent states associated with
it. Overall, having more latent states seems to be beneficial for the
relevance prediction task.

Eventually, we note that when the features contributed by the
BN are used, they turn out to be the most important. A striking
example is that the “search time” feature is barely used at all by
all the BN based models, while the baseline model does use them
heavily. Similarly, the “time to next action” feature is much more
used by the baseline than for the BN based models. This means
that they have been (somehow) successfully subsumed by the latent
states of the BN: The latent states contain more reliable information
than some baseline features do, which does validate our approach
based on layered BN, given the difference in the tree depths when
learning with GBT.

5. RELATED WORK
In this section, we review related work with respect to the three

different subtopics in our work: query chains, user activity models,
and document relevance prediction. We also discuss the differences
between the existing approaches and ours.
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different models (BN 5-5, 10-10, 5-20 and baseline). We only
plotted features that were selected by the learning algorithm.

Query chains. Radlinski and Joachims [15] built a Support Vec-
tor Machine (SVM) to classify pairs of queries issued within 30
minutes of one another, according to whether they belong to the
same chain. They found that a simple heuristic (30 minute thresh-
old) reached a 90% classification accuracy, while the sophisticated
learning approach achieved 94% accuracy. Given the difference in
algorithmic complexity, they opted for the simple heuristic. How-
ever, the general applicability of their analysis is limited since they
used logs from the Cornell University library (13,500 web pages)
where there is less interaction than with a general purpose web
search engine.

He and al. [9] devised an algorithm for grouping queries into
chains which checks for deleted or added terms in queries, as well
as taking into account the inter-query time interval. They catego-
rized query rewrites into classes such as generalization, special-
ization and reformulation. Machine learning techniques were then
used to create a classifier for these categories. Ozmutlu [14] re-
ported that He et al.’s results, produced from small logs, were not
reproducible on their data, and conducted experiments using the
same categories on a much bigger dataset using linear regression.
They find that time-interval between queries, word-overlap and po-
sition in the sequence of queries from the user for that day were
predictive of topic changes.

Shen et al. [17] proposed to use the content of the retrieved docu-
ments to detect query chains boundaries. While we did not consider
this feature as a possible indication of boundaries for complexity
reasons (computing a language model for each distinct query is not
practical when dealing with large search usage logs), an adaptation
of this idea through the use of a similarity matrix between words
could be useful.

We also plan in future work to use a machine learning approach
to build query chains. In the mean time we used simple heuristics
driven by our data since we don’t know how generalizable to our
own dataset the techniques mentioned above are. We opted for an
approach more sophisticated than Radlinski and Joachims since a
visual inspection of the chains did not seem to confirm their hy-
pothesis of a 30 minute time threshold.

User Activity Models. User activity models can be broadly di-
vided in three categories: (1) analysis models where the aim is to

gain insight into typical user behavior (2) models that try to predict
the next user action and (3) models that estimate the attractiveness
or perceived relevance of a document independently of layout in-
fluence .

White and Drucker [20] mine user search activity, both within
the search process and within the surrounding navigation process.
They distinguish two classes of users: navigators and explorers.
Navigators issue a query and then browse starting from one of the
results, while explorers actively use the search engine until they
satisfy their user information need. White and Drucker focused
on qualitative user analysis through user clustering but they also
found out that “the time taken to follow a search trail is independent
of the number of queries [in the chain]”, which is similar to our
observation that different chain states are associated to the same
average number of queries but to different query chain durations.

Lau and Horvitz [11] studied the dynamics of user query re-
finement by trying to find the relationship between two adjacent
search actions (new query, reformulation, additional results, etc.),
the inter-query interval and the information goal (query category
among fifteen pre-established categories). More recently, Downey
et al. [6] proposed a model for web search activity. They use a list
of features (at various levels, including user ones) and a model in
order to compute the probability of the next action performed by
the user given the features and the last user action. An example of
application of their work is result pre-fetching. Their most impor-
tant feature for predicting the next user action is the time since start
of the atomic session. In both papers, the models are predictive and
do not facilitate clustering the different parts of a search trail as our
model does. On the other hand, our models would probably be bad
at predicting the next user action (since the number of latent state
is small) but offers a good summary of a subset of user actions.

Eventually, some models try to decouple the effect of the pre-
sentation (ranking of documents, etc.) from the perceived rele-
vance (attractiveness) of a document. For example, the model in [7]
explains a click on an URL as caused by both the document at-
tractiveness and the position effect, i.e. the probability that a user
considers (“looks at”) the document snippet returned by the search
engine. Assuming that an unattractive document is often not rele-
vant, which seems intuitive, a presentation debiasing model could
be fused with the BN model in order to predict relevance more ac-
curately.

Predicting relevance. Most previous work do not predict rel-
evance but attractiveness, i.e. whether a user is attracted by the
document snippet produced by the search engine to click on it, pro-
vided he examines it. Two exceptions are Carterette and Jones [4]
and Agichtein et al. [1]. Carterette and Jones use logistic regression
to predict relevance of documents to a query from the click-through
rate of the document at the different positions. Agichtein et al. use
a set of features extracted from aggregated user behavior (over the
same query-URL pair) and predict relevance with neural networks.
Both models relies on a minimum number of sessions of the same
query to get accurate predictions. In comparison, the BN model
we built can be used to accurately predict relevance of a document,
based on the outcome of one query chain only. In this article we
chose not to compare to those methods, since the two possible ex-
perimental setups would have given an unfair advantage to one of
the methods: In the first case, predicting from one observation, we
would have a click through rate of 0% or 100% (once) for any posi-
tion, thus having a very bad estimate of relevance of the document
with the Carterette and Agichtien model; using all the observation
for one query-document, we would have faced the problem of the



aggregation of our model’s predictions, which uses a rather sim-
plistic aggregation method.

Other methods for predicting relevance from query chains in-
clude the work of [18] who extended a language model for IR to
include the feedback provided by previous interactions with the
search engine. In this model, the query language model is defined
as a mixture of language models, one using the query terms only
and the other using the sessions of similar past queries (more pre-
cisely, to the language model of the documents clicked or not within
these sessions). The purpose of this model is to include past infor-
mation to answer a new user’s query contrarily to our approach
which is more focused on building a representation of the search
process and on the relevance of a document within this session.

Compared to previous approaches, our method is the only one
where a retrieved document, for the same query string, can be judged
relevant or not depending on the context. This suits well the obser-
vation of various works on relevance where relevance to a user and
relevance to a subject or topic are distinguished [13]. This feature
could be used for user personalization.

Finally, small scale user studies performed by Kelly and al. [10]
studied the relationship between the time spent on a page and the
relevance of a document, but did not find any strong consistent re-
lationship. However, in [10] the authors suggested that the time
spent should be taken into account in the context of the other user
actions; our own findings show that this is indeed the case.

6. CONCLUSIONS
In this paper, we proposed a fully automatic way of agglomer-

ating atomic user sessions into chains of queries associated with a
single task or information need. Our approach consists of finding
two thresholds, one time related and the other based on query string
similarity. We believe the thresholds we found are stable enough to
be used as is in other work on general search engines, since they
were stable across datasets, and correspond to basic properties of
human attention, reading time, and query modification. However,
we pointed out that more sophisticated approaches, capable of de-
tecting session-interleaving and long-term information needs could
improve the results.

After observing that the different user activities can be matched
to a hierarchical structure where an information need task includes
one or more searches that themselves include one or more pages
of search results, etc., we proposed a layered Bayesian Network
model where each discrete latent variables acts as a “summary”
of a subset of actions like e.g. everything related to the browsing
of a search results page. To validate our approach, we used fea-
tures extracted from the BN to predict the relevance of documents.
We showed that this set of features improves the prediction perfor-
mance compared to a baseline model that doesn’t use them. Our
model could be improved by automatically determining the num-
ber of states for the latent variables, and by investigating what are
the observations we chose at the various level of the goal hierarchy.

Similar to [6], we could use more detailed logs provided by users
who sign up for a product like a search toolbar. These provide in-
formation on all the search activities undertaken by the user, in par-
ticular what the user does after having clicked on a document and
before he resumes interactions with the search engine. We could
also apply our model to predict user satisfaction with search results.
This could be done using a BN model where satisfaction appears
directly as a variable dependent on the chain type, and by learning
to optimize the value of this variable from human assessments.
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