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Representation Learning for Classification in
Heterogeneous Graphs with Application to Social Networks

LUDOVIC DOS SANTOS, BENJAMIN PIWOWARSKI, LUDOVIC DENOYER,
and PATRICK GALLINARI, CNRS, Sorbonne Université, LIP6 UMR 7606

We address the task of node classification in heterogeneous networks, where the nodes are of different types,

each type having its own set of labels, and the relations between nodes may also be of different types. A

typical example is provided by social networks where node types may for example be users, content, or films,

and relations friendship, like, authorship. Learning and performing inference on such heterogeneous networks

is a recent task requiring new models and algorithms. We propose a model, Labeling Heterogeneous Network

(LaHNet), a transductive approach to classification that learns to project the different types of nodes into

a common latent space. This embedding is learned so as to reflect different characteristics of the problem

such as the correlation between node labels, as well as the graph topology. The application focus is on social

graphs, but the algorithm is general and can be used for other domains. The model is evaluated on five datasets

representative of different instances of social data.
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1 INTRODUCTION

Social networks (Facebook, Google+, . . . ) and social media (Twitter, LastFM, . . . ) may be naturally

represented as heterogeneous graphs, where different types of nodes (users, authors, films, . . . )

interact through different types of relations (friendship, like, authorship, . . . ). For example, the

LastFM social network used in our experiments (Figure 1) links users, tracks, artists, and albums

via seven different types of relations such as friendship, most listened tracks, authorship, and so

on. Different generic data mining tasks can be conducted on heterogeneous networks such as

classification [2], clustering [39], link prediction [11], as well as tasks more specific of social media,

such as information diffusion [8] or influence analysis [20, 21].
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Fig. 1. Representation of the LastFM network with users, tracks, albums, and artists (top to bottom). The
different relations are represented with different types of lines.

We consider here the generic task of multilabel node classification, in the general case of

heterogeneous graphs with multiple node and relation types. Graph node classification has been

investigated in machine learning since the early 2000s. Most work until now has focused on

homogeneous graphs, where nodes are of the same type, share the same label set, and where

relations reflect a unique type of dependency between nodes.

The main assumption in most homogeneous graph classification approaches is that two con-

nected nodes tend to have the same labels, so that graph labeling can be performed using some form

of label propagation from labeled nodes to their unlabeled neighbors [1, 6, 49]. Work in this domain

can be grouped in two main families : transduction/diffusion models and induction (feature-based)

models. Transduction models use all the nodes (labeled and unlabeled) to predict the labels of the

entire graph, in contrast to induction models, where classifiers are trained only on labeled nodes.

Extending the ideas used for homogeneous graphs to heterogeneous ones is not trivial. For

example, in transductive approaches, the label propagation paradigm becomes irrelevant when

neighbors are of different types, and hence have different sets of labels. Different attempts have

tried to reformulate the problem in order to use known homogeneous methods. The simplest idea

developed by several authors is to project the heterogeneous graph onto a family of homogeneous

ones (one node type, one relation type) and then perform classification independently for each

projection. This basic approach suffers from several drawbacks (i) defining semantically meaning-

ful projections is problem specific, (ii) the number of projections can rapidly become extremely

large, and (iii) as shown in our experiments, correlations between different types of nodes may

play an important role in the labeling task, and are lost after the projection. Another simple alter-

native consists in using restrictive assumptions so that homogeneous label propagation (HLP) can

be used. The authors in [17, 19], for example, consider heterogeneous graphs where the label set is

the same for all node types. Only some works have tackled the general heterogeneous node label-

ing problem with new algorithms, such as [2] in which the authors defined new forms of random

walks on heterogeneous graphs specifically adapted to this problem.

While all the above methods have been designed for operating directly on the discrete graph

structure, we follow here a different path by using a representation learning approach [5]. We

propose to map the classification problem onto a continuous space of latent node representations.

This representation space is common to all node types, hence allowing to handle heterogeneity.

Node embedding in this space reflects the classification objective for each type of node and its

associated label set, as well as the heterogeneous relational structure of the graph. Classification is
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Table 1. Graph Notations

General

#S Cardinality of a set S
Graph

N Set of nodes of the graph

E Set of edges of the graph

ni Node of the graph

Nj Set of neighbors of nj

T Set of node types

R Set of relation types

ti ∈ T Type of node ni

ri j ∈ R Directed relation type between node ni and nj

Labels

NL Set of labeled nodes

L Set of labels

Lt Set of labels associated with nodes of type t
yi� +1 if ni has label �, −1 otherwise

then performed directly on the latent space. This idea has been introduced in a preliminary work

[18]. The current article extends this work in several ways: we introduce prior parameters based

on the graph characteristics, we enrich the model with learned hyperparameters weighting the

relative importance of the different relation types, and, finally, we perform extensive experimental

evaluations on social datasets representative of different situations.

Summarizing, our contributions are the following:

—We address the heterogeneous graph multilabel classification problem as a representation

learning problem in a continuous latent space and consider a transductive approach to graph

node classification.

—We propose new algorithms for learning this representation space able to handle hetero-

geneity for both nodes and relations.

—We develop an experimental analysis of the algorithm behavior.

—We perform extensive experimentations with five datasets, representative of different het-

erogeneous social graphs, and compare our model with state of the art models.

The article is organized as follows. Section 2 introduces the notations. Section 3 describes the

model and the learning algorithms. Section 4 presents experimental results and comparisons with

baselines on five datasets. Section 5 is a synthesis of related work on graph labeling models and

graph representation learning. Section 6 concludes this work and gives some perspectives.

2 NOTATIONS

Let us first introduce the notations used throughout this article—they are summarized in Table 1.

An heterogeneous network is modeled as a directed graph G = (N ,E), where N is the set of

nodes and E the set of edges. We denote ni a node of this graph, T the set of node types, and

ti ∈ T the type of node ni . We denote by R the set of possible relation types, and Er the set of

edges of type r ∈ R. When there is an edge between ni and nj , we denote ri j ∈ R the type of the

relation between ni and nj . We consider that there is at most one relation between two nodes. Note

that this is not restrictive, since the model can easily be used with multigraphs, but this simplifies

the description and notations.
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Table 2. Model Notations

d Dimension of the latent space

NC Set of labeled nodes used for learning the classifiers

fθ�
and the labeled node representations z

NW Set of labeled nodes used to learn the relation

weights wr

zi Latent representation (zi ∈ Rd ) of node ni

z Latent representation set for all nodes z = {zi |i ∈ N }
wr Weight of the relation type r
wri j

Weight of the relation type ri j , wri j
∈ R

w Set of weights w = {wr |r ∈ R}
ψi Prior parameter reflecting the relative importance of

node ni ,ψi ∈ R+
ϕi j Prior parameter reflecting the relative importance of

relation between nodes ni and nj , ϕi j ∈ R+
θ� Parameters for the classifier for label �
Θ All the classifiers parameters: Θ = {θ� |� ∈ L}

With respect to node labels, Lt denotes the set of categories associated with nodes of type t ,
and NL ⊂ N is the set of labeled nodes. For i ∈ NL , yi� is the class indicator associated with ni

and label �: if node ni is labeled by �, yi� = 1 and if not yi� = −1.

Finally, we denote by #S the cardinality of a set S .

3 MODEL

3.1 Model Description

Our model, Labeling Heterogeneous Network (LaHNet), has been designed for transductive node

classification in heterogeneous graphs. The objective is to learn node representations so that each

type of node can be correctly classified while exploiting the correlations between the labels of

different node types as well as the graph structure. These interdependencies between nodes of

different types play an important role in several classification problems, and none of the current

methods is able to correctly handle them. The variables to be learned are as follows:

(1) the latent representations zi ∈ Rd (for each node ni ),

(2) the relation weights wr (for each relation type r ),

(3) and the classifiers parameters θ� , where � indicates a given label.

The notations for the model description and parameters are summarized in Table 2.

3.1.1 Loss Function. The loss function takes the general form of a transductive regularized loss

[19, 49], with a classification term LC and a regularization term LG :

L(z,Θ) =
∑

i ∈NC

∑
�∈Lti

ψi

#Lti

ΔC ( f (zi ;θ� ),yi� )

︸��������������������������������������︷︷��������������������������������������︸
LC

+λ
∑
i ∈N

∑
j ∈Ni

wri j
ϕi j ΔG (zi , zj ),

︸����������������������������︷︷����������������������������︸
LG

(1)

where

—ΔC is the classification loss (for one node and one label), which is optimized on a subset of

labeled nodes NC ⊂ NL ;

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 5, Article 62. Publication date: July 2018.



Representation Learning for Classification in Heterogeneous Graphs 62:5

—ΔG is the graph regularization loss (for a pair of connected nodes), which is optimized over

all the edges present in the graph;

— f (.;θ� ) is a parametric classifier with parameters θ� (there is one set of parameters for each

� ∈ L);

—ϕi j ,ψi and wri j
� 0 are real parameters that will be discussed later (Section 3.2);

—λ ∈ R is the regularization weight.

Within a classical transductive homogeneous graph formulation [1, 19, 49, 49, 50], each zi can

be interpreted as a vector of label probabilities, and the regularization term operates as a diffusion

equation for propagating labels from labeled nodes to their unlabeled neighbors. In our model,

the zi s have a different role: they are latent node representations in Rd . The second term LG in

Equation (1) forces neighbors to have close latent representations z whatever their type is. The

terms LC and LG are optimized simultaneously w.r.t. parameters zi for each node ni , and w.r.t. θ� ,

for each node label � ∈ L.

Let us now detail the components of the loss presented in Equation (1).

3.1.2 Classifier. The mapping onto the latent space is learned so that the labels for each type

of node can be predicted from the latent node representation. For that, for each label � ∈ L, we

use a classifier parameterized by θ� , denoted by f (.;θ� ). For a node ni and a label � ∈ Lti
, this

classification function takes as input the node representation zi and outputs a classification score

f (zi ;θ� ).
The classifiers parameters θ� , for � ∈ L, are learned by minimizing the first term in Equation

(1) for the labeled dataset NC , that is,

LC =
∑

i ∈NC

∑
�∈Lti

ψi

#Lti

ΔC ( f (zi ;θ� ),yi� ), (2)

where f (zi ;θ� ) and yi� are, respectively, the classification score and target associated with node

ni and label �. ΔC ( f (zi ;θ� ),yi� ) is the loss of predicting a classification score f (zi ;θ� ), while the

target is yi� . The hyperparameter ψi represents the node i prior importance, and is defined in

Section 3.2.

In the experiments, we used a standard hinge-loss function for ΔC :

ΔC ( f (z;θ� ),y� ) = max(0, 1 − y� f (z;θ� )), (3)

where y� is equal to 1 if n is labeled by � and −1 otherwise, and f (z;θ� ) is the predicted score of

label � given that the node representation is z. In our experiments, f is a linear classifier, i.e.,

f (z;θ ) = z · θ .
Other classifiers, e.g., multilayer neural networks, could have been used. In our experiments, we

have observed that using a simpler classifier led to easier convergence, as well as comparable or

better results.

3.1.3 Transductive Graph Model. The second term in Equation (1) exploits the proximity of

the nodes in the graph. More precisely, nodes linked in the graph are encouraged to have close

representations in the latent space. We used an L2 term ΔG (zi , zj ) = | |zi − zj | |2 for this loss:

LG =
∑
i ∈N

∑
j ∈Ni

wri j
ϕi j | |zi − zj | |2, (4)

where Ni denotes the graph neighbors of node i , wri j
∈ R+ is a learned weight for the relation of

type ri j (Section 3.2.2), and ϕi j ∈ R represents a prior on the relative importance of the relation

between ni and nj (Section 3.2.1).
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Ensuring that connected nodes are close in the latent space, first implies that connected nodes

of the same type will be classified similarly. This is a common hypothesis of all transductive models

for node classification. Even if nodes are not directly connected, but are a few hops away, the graph

regularization will push the representations, and hence the labels of indirectly connected nodes to

be the same. This is beneficial for classification as shown in other models such as Graffiti [2].

Finally, ensuring that neighbors of different types are close in the representation space also

allows one to exploit correlations between labels of nodes with different types and to better handle

the classification problem in heterogeneous graphs.

To illustrate why this might be the case, suppose that we have two types of nodes, A and B, and

that, when a node of type A is labeled �1, this is highly correlated with the fact that a neighbor of

type B is labeled �2. Let us denote zA and zB the representations of two neighbors from types A
and B.

The regularization term LG will push zA and zB close one to the other. If their labels are strongly

correlated, so is the classification term ΔC . This will lead the corresponding classifiers f (.;θ�1 ) and

f (.;θ�2 ) to be aligned (see also Section 4.7 where this is confirmed experimentally). Both terms in

the loss function have the same action so that the two nodes (zA and zB ) and classifiers represen-

tations (θ�1 and θ�2 ) will be very close. An unlabeled node of type say B in the neighborhood of

the node corresponding to zA, will then be attracted toward zA and then toward zB thanks to the

label correlation between A and B. Label correlation is hence captured by the model, and helps

improving inference. If the labels of the two nodes are not correlated, the two components of the

loss term may act in an opposite way on zA and zB , and nodes should not influence each other.

This is also handled by the relation specific weight which is learned—see Sections 3.2.2 (theoretical

development) and 4.6 (experimental observations).

3.2 Prior Parameters and Learning Algorithms

The loss function in Equation (1) makes use of three graph related parameters, namely ϕi j , ψi ,

and wr . Introducing these three families of hyperparameters allowed us to significantly improve

the model performance. The ϕi j and ψi are priors taking into account local graph characteristics,

while the wr are learned relation-specific weights reflecting the relative importance of the differ-

ent relation types r ∈ R for the classification task. The definition and computation of the three

hyperparameters is described as follows.

3.2.1 Prior Parameters. Let us suppose the ϕi j , the ψi , and the wr parameters be set to 1 in

loss function (1). When optimizing this loss, all nodes have an equal importance (term LC ) and

similarly, all the edges have the same importance (term LG ). This might not be optimal, and, during

preliminary experiments, we explored various settings for the hyperparameters ψi and ϕi j . We

report here the most reliable ones.

First, wrong decision for important nodes should be over-penalized. In the regularization loss

LG , this is the role of the coefficientψi associated with node i . Forψi , we found out that a node im-

portance should be increased when (1) it has links with other nodes; (2) those links are of different

types. Formally, we found that the following formula behaved well:

ψi =
1

#R
∑
r ∈R

#N r
i

#Er
,

with #N r
i the number of neighbors of i for relation r and #Er the total number of relations of type

r in the graph. The coefficientψi is high if node i has many relations of different types.

Besides node priors, some relation types between nodes might be important for the classification

objective, but if they are under-represented in the graph, they will be ignored. We found out that
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it was important to weight them up, which is the role played by the prior coefficient ϕi j . More

precisely, we found that the following formulation adapted from [2] was the most efficient among

several heuristics:

ϕi j =
1

#R#N ri j

j #Eri j
,

with #N ri j

j the number of neighbors of j for which the relationship is ri j . The #Eri j coefficient

gives a similar importance to all relation types: it increases the weight of under-represented rela-

tion types so that in (4) their influence will be balanced with the one of more frequent relations.

The #N ri j

j coefficient gives more importance to neighbors j for which the relationship ri j is less

frequent.

3.2.2 Learned Relation Specific Parameters. The graph regularization coefficients wr are

relationship-specific. They reflect the importance of relation r for the inference task. For exam-

ple, if inference consists in classifying an author research domain, then the authorship relation

between authors and their published papers is probably more important than their affiliation re-

lationship. For the model, this means that authors’ representations should be close to their papers

representations, whereas no such constraint operates on the affiliation representation. Thewr are

hyperparameters that could be learned by grid search and cross-validation. Since there might be

several relation types for a heterogeneous graph, and hence a high number of potential values to

experiment with, this is not a relevant option here. We used instead the framework of continuous

optimization of hyperparameters [4, 23].

This framework has been developed for learning regularization hyperparameters. Given a reg-

ularized loss such as (1), hyperparameters are learned along with the model parameters, by opti-

mizing the unregularized loss on a distinct training set NW .

Contrarily to grid search, which also selects regularization hyperparameters using an unregu-

larized loss on a validation set, by testing different preset hyperparameters values, here parameters

and hyperparameters are learned simultaneously and their dynamics are intertwined. There is no

formal proof that such procedures converge to an optimal choice of the hyperparameters, but they

offer an approximate solution, which performs well in many cases (see [23] for a discussion).

There have been several instances of this general framework, and we derive below our own

version for the specific problem handled here. Our inference problem is classification, and hence,

following [4, 23], our loss function for hyperparameter training is the classification objective de-

noted LW . This loss LW is defined on NW , a set of labeled nodes distinct from the labeled set NC

used in Equation (1), i.e., we ensure that NW ∩ NC = ∅.
The loss we optimize with respect to the weights w = {wr } is similar to LC but defined on a

different set of labeled nodes:

LW (w) =
∑

i ∈NW

∑
�∈Lti

ψi

#Lti

ΔC ( f (zi (w);θ� (w)),yi� ). (5)

The proposed learning scheme uses an alternating optimization algorithm:

(1) learning the parameters {zi }, {θ� } by optimizing the loss LC + λLG of Equation (1), with

the {wr } fixed;

(2) learning the hyperparameters {wr } by optimizing the loss of Equation (5).

At each iteration of this process, the values of Θ and z after step 1 are dependent on the current

w: more precisely, Θ(w) and z(w) are the parameters that minimize the loss of Equation (1). This

dependency is emphasized in Equation (5) by the notations zi (w) and θ� (w).
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Minimizing (5) is performed by gradient descent. In Appendix A, we derive a closed form for
∂LW

∂wr
, that relies on a series of reasonable assumptions about how the classifier and embeddings

change with respect to a change of the hyperparameter wr . We show that the derivative of the

unregularized loss LW with respect to a weight wr is approximated by

∂LW

∂wr
≈
∑

i ∈NW

∑
�∈Lti

ψiyi�

∑
r ′�r wr ′A

r r ′
i θ� ·

(
Sr ′

i − Sr
i

)
(∑

r ′ ∈R wr ′A
r r ′
i

)2
︸��������������������������������������︷︷��������������������������������������︸

Dr �
i

, (6)

with

Sr
i =

∑
j ∈N r

i
ϕi jzj∑

j ∈N r
i
ϕi j

and Ar r ′
i =

∑
j ∈N r ′

i
ϕi j∑

j ∈N r
i
ϕi j
. (7)

Equation (6) measures the variation of the empirical risk (5) whenwr changes. To develop some

intuition of this equation, let us suppose that all the ϕ andψ coefficients are equal to 1: they are all

positive anyway, and the main change would be in the relative importance of the type of neighbors

depending on the set hyperparameters ϕi j andψi .

We consider the inner term in (6), i.e., term Dr �
i , and, more precisely, its sign that determines

whether we should increase or decrease the weight wr . Without loss of generality, let us consider

the case of a target label yi� = 1. The sign of Dr �
i is then determined by

∑
r ′�r

wr ′A
r r ′
i θ� ·

(
Sr ′

i − Sr
i

)
,

the expressionwr ′A
r r ′
i is positive, since both of its components are positive. The sign of ∂LW

∂wr
hence

depends on θ� · (Sr ′
i − Sr

i ). In this expression, Sr
i is the average of the zj vectors for all j r-neighbors

(neighbors according to relation r ) of node i . Hence, (θ� · Sr
i ) is the score for label � of the center

of mass of the r -neighbors of node i . Similarly, θ� · Sr ′
i is the score for label � of the center of mass

of the r ′-neighbors of node ni .

If the center of mass of the r ′-neighbors has a higher score that the center of mass of the r -

neighbors, the difference θ� · (Sr ′
i − Sr

i ) will be negative, leading to an increase of wr —and a de-

crease if the contrary holds. Summarizing, the weight of relation r will be increased if the center

of mass of the r -neighbors is better located (w.r.t. the classification task) than the center of mass of

the other neighbors, i.e., if it reinforces the correct classification, and will be decreased otherwise.

3.3 Algorithm

Algorithm 1 describes the alternating optimization scheme for learning the θs, zs , and ws.

Step 1. Learning θ and z corresponds to lines 1–18. One samples a pair of connected nodes

i and j, and then makes a gradient update of the parameters for loss (1). A node in NC

appears in the two terms of Equation (1). The update w.r.t. the first term is indicated

lines 8–9 for node i and 13–14 for node j and consists in successively modifying the

parameters of the classification function θ and of the latent representations zi and zj so

as to minimize the classification loss. For all the nodes, be they in NC or not, the model

updates the parameters w.r.t the graph loss (second term of Equation (1))—lines 16–17.

These different steps are repeated up to a fixed number of iterations.

Step 2. Using as training set NW , one then learns the ws by gradient descent on LW . We

compute the derivatives w.r.t. the relations by summing over all the nodes in NW —line
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ALGORITHM 1: Alternating Optimization Algorithm

Input: z node representations, w weights, ϵ gradient step, λ tradeoff, NC ,NW � the number of

iterations;

Output: Learned z and w ;

1 for k iterations do

2 for #N iterations do

3 � Learn the representations {zi } and the classifier parameters Θ;

4 Choose r in R at random;

5 Pick randomly an edge i
r→ j;

6 if i ∈ NC then

7 for � ∈ Li do

8 θ ← θ − ϵ∇θ Δ( f (zi ;θ� ),yi� ) ;

9 zi ← zi − ϵ∇zi Δ( f (zi ;θ� ),yi� ) ;

10 end

11 end

12 if j ∈ NC then

13 for � ∈ Lj do

14 θ ← θ − ϵ∇θ Δ( f (zj ;θ� ),yj� );

15 zj ← zj − ϵ∇zj Δ( f (zj ;θ� ),yj� );

16 end

17 end

18 zi ← zi − ϵ
wi j

N
ri j
j

λ∇zi | |zi − zj | |2;

19 zj ← zj − ϵ
w ji

N
rji
i

λ∇zj | |zi − zj | |2 ;

20 end

21 Let grad_w = [0, . . . , 0] � Learn the wr ;

22 for i ∈ NW do

23 for � ∈ Lti do

24 if 1 − yi� (θ� |z�i ) > 0 then

25 for r ∈ R do

26 grad_w[r] +=Dr �
i � See Equation (6) ;

27 end

28 end

29 end

30 end

31 for r in R do

32 wr ← wr − ϵ × grad_w[r]

33 end

34 Normalize w w.r.t. relations

35 end

26—according to Equation (6). Then, we updatewr —line 32. Finally, we normalizewr —line

34—(Equation (13)). This alternating scheme is iterated for a fixed number of iterations.

For step 1, we have been using a stochastic gradient. For Step 2, because of normalization (13),

we used a batch gradient.
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Note that in Algorithm 1, ϕi and ψi j do not appear explicitly. They are implicitly computed

through the following sampling procedure: we first sample uniformly the type of edge (line 4),

then choose uniformly an edge given that type (line 5). This sampling corresponds to optimizing

Equation (4) with hyperparameters

ϕi =
1

#R
∑
r ∈R

#N r
i

#Er
,

for the classification term and

ψi j =
1

#R#N ri j

j #Eri j
,

for the graph regularization one.

Regarding the numerical complexity, we can see that the main loop has a fixed number of iter-

ations (k), while the inner loops are composed of (step 1) #N iterations (one iteration per node),

each of complexity d (since we have a linear classifier), and (step 2) #NW iterations (where NW is

the training set which is used to learn the hyperameters), where each computation is of complexity

O (N̄d ), with N̄ the average number of neighbors for a node. Overall, the complexity isO (kd (#N +
N̄ )). In practice, we were able to deal easily with huge datasets like IMDB (see Section 4)—with k
being set to a maximum of 1,000 iterations (in practice, convergence happened much earlier).

While there is no formal proof for the algorithm convergence, we observed that node represen-

tations, classifiers, and weights wr converged after a few hundred iterations (k) of the algorithm.

Intuitively, we can see that a minimum of the loss L of Equation (1) corresponds to an equilibrium

between the regularization loss LG , that pushes all the nodes to a single point, and the classification

loss LC , that pushes the nodes toward the regions corresponding to the correct label classification.

In Algorithm 1, ϵ is the gradient step, and λ is the tradeoff between the classification and smooth-

ness terms. Both parameters were set by grid search.

4 EXPERIMENTS

4.1 Datasets

Experiments have been performed on five datasets respectively extracted from DBLP, FlickR,

LastFM, and IMDB. For all but the first dataset (DBLP), each node can have multiple labels. The

datasets are described below. Statistics for the datasets are provided in Table 3.

The DBLP dataset 1 [39] is a bibliographic network composed of authors and papers. We consider

here two different sets of labels: authors are labeled with their research domain (4 labels), while

papers are labeled with the conference name they were published in (20 labels). Authors and papers

are connected through an authorship relation. The network is then composed of two types of nodes

and is bipartite, with one relation type. Classification is monolabel on papers and authors.

The FlickR corpus is composed of photos and users. The photo labels correspond to different

possible tags while the user labels correspond to their subscribed groups. The classification prob-

lem is multilabel: images and users may belong to more than one category. Photos are related to

users through an authorship relation, while users are related to other users through a following

relation. We have kept the image tags that appear in at least 500 images, and user categories that

also appear at least 500 times in the dataset resulting in 21 possible labels for photos and 42 for

authors.

We used two different LastFM datasets denoted LastFM1 and LastFM2, collected independently

using the LastFM API.2 Both datasets are social networks composed of users, tracks, albums, and

1The dataset is available at http://web.cs.ucla.edu/yzsun/data.
2To access the API go to http://www.lastfm.fr/api. The detailed procedure on how we collected these datasets is provided

in Appendix B.
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Table 3. Statistics for the Datasets

Nodes

Type No. nodes No.labeled nodes No. labels

Paper 14,376 14,376 20

DBLP Author 14,475 4,057 4

Edges
Type No. edges

Author↔Paper 41,794

FlickR

Nodes
Photo 46,926 8,766 21

User 4,760 3,476 42

Edges
User↔User 175,779

User↔Photo 46,926

LastFM1

Nodes

User 1,013 321 59

Track 35,181 24,562 28

Album 32,118 15,966 47

Artist 17,138 11,564 47

Edges

User↔User 1,109

User↔Album 47,541

User↔Artist 47,812

User↔Track 47,807

Track↔Album 29,647

Track↔Artist 35,181

Album↔Artist 32,118

LastFM2

Nodes

User 20,004 5,000 48

Track 340,356 177,297 32

Album 247,681 59,226 52

Artist 103,951 60,388 59

Edges

User↔User 23,573

User↔Album 951,274

User↔Artist 960,227

User↔Track 970,381

Track↔Album 162,364

Track↔Artist 340,356

Album↔Artist 247,681

IMdB

Nodes

Film 2,724,246 1,050,323 28

Actor 3,146,496 0 0

Director 362,470 0 0

Edges
Film↔Actor 14,308,748

Film↔Actress 8,526,214

Film↔Director 2,055,234
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artists. The task is multilabel classification and all the node types have their own set of labels. Users

are labeled with the type of music they like (59/48 labels, respectively, for LastFM1 and LastFM2,

e.g., female vocalists, ambient, . . . ), tracks with the kind of music they belong to (28/32 labels, e.g.,

rock, indie, . . . ), albums with their type (47/52 labels, e.g., various artists, live, . . . ), and artists with

the kind of music they play the most (47/59 labels, e.g., folk, singer songwriter, . . . ). Users are linked

to users (friendship), tracks (favorite tracks), albums (favorite albums), and artists (favorite artists).

Tracks are linked to albums (belong to) and artists (singer). Finally, albums are linked to artists

(sing in). Note that both a track and an album may be linked to several artists. The LastFM graph

is schematically represented in Figure 1. Some labels may overlap between different types of nodes

but we suppose that in this case, they are distinct, e.g., pop is not the same for an artist or a track.

Finally, the IMDB dataset3 is a movie description dataset composed of actors, actresses, films, and

directors. Only films are labeled with 28 possible labels corresponding to their type (Documentary,

Drama, Comedy, . . . ). Films are related to actors and actresses using a casting relationship and to

directors using a film maker relationship.

4.2 Evidence for Heterogeneous Node Reciprocal Influence

Throughout this work, we make the assumption that correlations exist between the labels of differ-

ent types of nodes, and that modeling this influence is useful for the heterogeneous classification

task. We exhibit below some statistics and characteristics of the datasets to support this hypothesis.

In the following, we denote Lx the random variable corresponding to the label of a node of type

x . We consider the conditional probability P (Ly = ly |Lx = lx ) that a node of type y has label ly if

a neighbor of type x has label lx . To simplify the analysis, we make the hypothesis that P (Lx = x )
was a uniform probability distribution over the labels.

In Figure 2, we have plotted some typical conditional distributions between couples of variables.

In order to make the graphics more readable, we have ordered labels lx by increasing conditional

entropy4 H (Ly |Lx = lx ) along the x-axis, for all the possible values lx . The conditional entropy

quantifies the amount of information needed to describe the outcome of Ly given Lx , so that the

most informative Lx values are near the x-axis origin. For each value lx of Lx , i.e., for each x
coordinate, we further order the Ly values according to decreasing values of P (Ly |Lx ) for all the

possible values of LY , i.e., for each LX value, the strongest dependencies are near the origin of

the y-axis (the red part of the plots). Figure 2 shows four pairwise dependencies as measured by

P (Ly |Lx ) on the LastFM2 dataset. All of them show clear peaks along the 0-y ordinate, and the peak

values decrease when x increases. For all these examples, there is a clear dependency between the

two variables. If we take a closer look, we can see (first row of the Figure) that P (Luser |Ltr ack ) is

more peaked than P (Luser |Luser ), meaning that the music a user listens to is more correlated to the

user labels than to his friends’ labels. The second row of the figure shows a similar phenomenon:

P (Lar tist |Luser ) < P (Lar tist |Ltr ack ), meaning that the labels for an artist are more correlated to

his musical production than to the labels of his followers. We also show under each figure the

conditional entropy H (Ly |Lx ) for each couple of variables. The most peaky distributions have an

entropy, which is two orders of magnitude lower than the flatter distributions. Table 4 summarizes

the conditional entropies computed for the different relations on the LastFM2 dataset. From those

values, we could conclude that we should learn more from the tracks a user listen to than from

the music his friends listen to. This matches the intuition of the semantics of such relations. We

show in Section 4.6 that this property is properly captured when learning the relation specific

3The dataset is available at http://www.imdb.com/interfaces.
4H (Ly |Lx = lx ) =

∑
ly ∈Ly p (Lx = lx , Ly = ly ) log

p (Lx =lx )
p (Lx =lx ,Ly=ly ) .
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Fig. 2. Plots illustrating the interdependencies between labels of two node types for the LastFM2 dataset.
Each plot shows P (Ly = ly |Lx = lx ) for a specific variable couple (lx , ly ). The values lx and ly have been
reordered for clarity (see text). The x-axis corresponding to variable Lx is on the bottom left of each plot, and
the y-axis corresponding to the Ly is on the bottom right.

Table 4. Conditional Entropies H (LY |LX ) for the LastFM2 Corpus, X
and Y Being Neighbors in the LastFM Graph

Note: Lower values mean higher dependency between the two variables.

parameterswr . Additional figures exhibiting similar behaviors for other relations and corpora are

available in Appendices C and D (Figures 6, 7, 8 and Tables 15, 16, 17).

Further insights into this dependency are provided by Figure 3. It shows the cumulative values

of P (Ly |Lx ) for different relations w.r.t. the percentage of the number of couples considered on the

LastFM2 dataset. We start with the highest P (Ly |Lx ) for any relation, the value of which is plotted
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Fig. 3. Plot of the average of the cumulative sum of conditional probabilities P (Ly |Lx ) for all relation types
on the LastFM2 dataset. The P (Ly |Lx )s are in decreasing order on the x-axis. x = 40% means that 40% of the
conditional probability values have been considered and the corresponding cumulative value is plotted on
the y-axis.

at x = 0%, and we accumulate the successive values P (Ly |Lx ) taken in decreasing order. The figure

shows first that all the relations between the pairs of variables exhibit some dependency: at x =
20%, one already has a cumulated value of P (Ly |Lx ) between 58% and 87% regardless of the relation

type. Second, some relations are clearly more informative than others, e.g., for x = 10% the relation

user → user has cumulated 38% of conditional probability, whereas the relation artist → track has

cumulated 72%. Additional figures exhibiting similar behaviors for other corpora are available in

Appendix E (Figure 9).

These statistics clearly show that there exists strong interdependencies between labels of dif-

ferent node types, which could be exploited by an appropriate model, and this confirms our base

hypothesis.

4.3 Comparison with Other Models

We compare our approach with four baselines described below. The first one, LINE [41] is repre-

sentative of unsupervised learning methods for graph embeddings. Based on [26], LINE learns dis-

tributed representations by maximizing the probability of a node knowing its neighbors. We then

performed a logistic regression with the learned representations as inputs. The second one, HLP

[53], provides a comparison with a representative model of label propagation, typical of semisu-

pervised transductive learning on homogeneous graphs. For HLP, there are two main ways to

construct an homogeneous graph from an heterogeneous one, each considers a separate classifi-

cation problem for any node type:

—For each node type, use the whole graph for propagating the labels of this given type: only

the nodes from this type will be considered for classification, and all the nodes are consid-

ered in the propagation loss. Then, repeat the propagation for all types of nodes.

—Construct a projection of the heterogeneous graph for each type of nodes, thus building an

homogeneous graph, and then propagate the labels on each homogeneous graphs.

The second option (projection) requires defining projections of the heterogeneous graph onto

homogeneous ones. There are many possible choices for that and the results heavily depend on

this choice. We rather considered the first option. The third baseline, Graffiti, is a state of the art
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model for the task of classification in heterogeneous graphs [2]. It is a modified random walk that

captures the influence among nodes of the same type by considering their common neighbors. For

example, given a node, it can jump to another node of the same type by either following a direct

link or using a 2-hop jump via a common neighbor of another type. Graffiti has been shown to

be superior to the following four models on different datasets (FlickR and LibraryThing): a naive

Bayesian classifier, TopicalPR [31], a hybrid classifier [28], and an iterative relaxation labeling

classifier [3]. Although it allows to develop random walks on heterogeneous graphs, it does not

take advantage of the correlations between labels as our model does. Finally, we experimented with

a transductive approach, which is closer to our work, namely Max-Margin Deep Walk (MMDW)

proposed5 in [42]. Like LaHNet, this approach uses a classification loss, which is a Support Vector

Machine (SVM), as well as a regularization loss, which is based on Deep Walk [33]. The main

differences with our approach are that (1) there is no overall regularized loss; (2) the Deep Walk

criterion is different from ours and imposes more constraints on the latent space since linked

nodes should have a high inner product, and hence the same direction in space; (3) MMDW does

not differentiate the importance of relations or nodes like LaHNET. We show in the experimental

section that these three differences have an important impact on the performance.

4.4 Evaluation Measures and Protocol

4.4.1 Evaluation Measures. We have considered two different evaluation measures: Precision at

1 (P@1) measures the percentage of nodes for which the category with the highest predicted score

is among the observed labels for this node. For monolabel classification, this should be the target

label, while for multilabel classification, this could be any of the target labels. Precision at k (P@k)

is the proportion of correct labels in the set of k labels with the highest predicted scores. For the

monolabel dataset DBLP, we only make use of Precision at 1 (P@1). For the multilabels dataset,

P@k will denote an average over all the node types, with k set to the number of categories a node

belongs to. We optimized the different models with regard to microaverage, but we report both

microaverage and macroaverage precision P@•.

4.4.2 Hyperparameters. LINE has four hyperparameters: the mini-batch size, the learning rate,

the dimensionality of the unsupervised learned representation, and the number of negative sam-

ples. HLP has one hyperparameter: the number of times the model is iterated. Graffiti has four

hyperparameters: three characterize the random walk and one the number of iterations. MMDW

has three hyperparameters: the regularization term λ, the SVM margin C , the SVM bias α . Given

the algorithmic complexity of MMDW, we verified that the hyperparameters chosen by the au-

thors [42] were the best on DBLP, FlickR, and LastFM1, which was the case, and used them for

IMDB and LastFM2.

Finally, our model has seven hyperparameters described in Table 5. The hyperparameters for all

the models were optimized by grid search on a validation set: we tested all possible settings, and

selected those that maximized the precision at k measure on the validation set. The performance

was then measured on the test set.

4.4.3 Protocol. Since we are in a transductive setting, all the nodes are used for training—but

not all the labels. For all the methods, we partition the labeled nodes into three datasets: train,

validation, and test. Model parameters are trained as described in Algorithm 1.6 Model selection

5We adapted the code from the authors https://github.com/thunlp/MMDW. To deal with our datasets, which are much

bigger than those the authors experimented with, we (1) optimized the code to leverage optimized linear algebra libraries;

(2) used gradient descent instead of second order methods for two of our biggest datasets, namely IMDB and LastFM2.
6We split the training set into two distinct training sets for optimizing, respectively, NC and NW .
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Table 5. Hyperparameters of the Model

Hyperparameter Meaning

d Dimension of the latent vector space: [50; 200]

GSz Step size of the gradient descent when updating the vector

representations: [10−4; 10−3]

ITERz Number of iterations of the algorithm: [100; 1000]

V Variance for the initialization of z representations: [10−4; 10−3]

λ Tradeoff between classification and smoothness: [10; 100]

GSw Step size of the gradient descent when updating the wr : [10−1; 1]

ITERw Number of iterations when to stop learning of wr : [10; 100]

(i.e., hyperparameter selection) is performed on the validation set using a Micro P@k measure,

which corresponds to the mean of P@k over all nodes. Performance is then evaluated on the test

set.

Experiments were performed with different training + validation set sizes: 10%, 30%, 50% of the

total size of the labeled dataset was used for training and validation. For a training + validation

size of 10% of the labeled nodes, we used a 50–50 partition (training-validation) of the labeled

nodes. We used a 80–20% partition for the other training + validation sizes. The training nodes are

selected at random. Summarizing, this gives us three scenarios:

10%: 5% for training, 5% for validation, and 90% for testing.

30%: 24% for training, 6% for validation, and 70% for testing.

50%: 40% for training, 10% for validation, and 50% for testing.

For example, in the LastFM2 dataset, for the user node type, a training + validation set of 10%

means that 500 users out of 5,000 labeled users have been selected; among those 500 users, 250 (50%)

are used during the parameters training phase and the remaining 250 are used for the validation.

For a training + validation set of 30%, we have 1,500 users that are divided into 1,200 users (80%) for

training and remaining 300 users for validation. Note that for this dataset, only 5,000 users out of

20,004 are labeled. Unlabeled nodes only appear in the graph regularization term of Equation (1).

Since, in our model, we need to train the hyperparameters, we further split for this model the

training set into two distinct subsets. The first one (denotedNC ) is used to learn the representations

and the classifiers and corresponds to 90% of this training set. The second one (denoted NW ) is

used to learn the hyperparameters wr and corresponds to 10% of this training set.

Finally, experiments are performed on five random splits. The hyperparameters are selected for

each split using the validation set. We then average 10 runs over each split to account for the

random initialization of parameters.

4.5 Results

In this section, we compare our model to the baselines on the five datasets described in Table 3. For

each dataset, we report the averaged P@k measures (microaverage and macroaverage on the node

types) and the P@k for each node type. The best performance on the test set is in bold. Results are

presented for the different datasets in Tables 6–10.

The main conclusions are as follows:

—Supervised models have better performance than the representative unsupervised LINE,

which proceeds in two steps: unsupervised representation learning followed by classifier

learning.
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Table 6. P@1 DBLP

Train + Val. size Model
Train Val Test

Micro Micro Macro Author Paper

LINE 25.1 18.9 19.5 23.0 29.1 16.8

10% HLP 100 24.7 24.1 27.2 32.6 21.8

MMDW 89.7 25.7 25.5 29.9 37.7 22.0

Graffiti 100 32.4 30.9 38.1 50.8 25.3

LaHNet 99.8 33.8 32.1 40.0 53.9 26.0

LINE 24.0 21.5 21.9 24.8 30.1 19.5

30% HLP 100 35.8 36.0 41.9 52.4 31.4

MMDW 86.4 36.0 35.5 41.9 53.4 30.4

Graffiti 100 39.6 38.5 46.6 61.1 32.1

LaHNet 99.7 43.0 41.2 52.9 73.8 31.9

LINE 24.2 21.1 22.3 25.0 29.8 20.2

50% HLP 100 39.7 39.4 46.5 59.3 33.7

MMDW 82.8 38.6 38.0 44.8 57.0 32.7

Graffiti 100 41.5 41.2 49.4 64.1 34.8

LaHNet 99.9 45.5 44.4 56.8 79.2 34.5

Table 7. P@k FlickR

Train + Val. size Model
Train Val Test

Micro Micro Macro User Photo

LINE 24.4 19.4 20.7 23.2 29.1 17.3

10% HLP 100 26.0 26.3 27.8 31.3 24.3

MMDW 62.4 21.5 21.0 21.0 20.9 21.0

Graffiti 100 24.3 24.5 27.0 32.7 21.2

LaHNet 99.3 31.8 31.9 31.9 31.8 32.0

LINE 23.0 21.6 21.5 24.2 30.6 17.9

30% HLP 100 47.6 47.7 43.7 34.5 53.0

MMDW 54.4 32.4 31.5 28.0 20.0 36.0

Graffiti 100 47.5 47.0 43.7 36.1 51.3

LaHNet 100 50.1 49.0 44.3 33.3 55.3

LINE 23.2 21.8 21.8 24.6 31.0 18.2

50% HLP 100 54.2 54.1 48.6 35.8 61.4

MMDW 54.9 37.5 36.7 31.9 20.9 42.9

Graffiti 100 54.4 54.0 48.8 36.9 60.8

LaHNet 99.9 55.8 54.3 48.2 33.9 62.4

—On all datasets HLP is below Graffiti and LaHNet. This clearly shows that modeling the

heterogeneity of the graph is essential.

—On all datasets MMDW is below Graffiti and LaHNet. We discuss the reasons below.

—LaHNet outperforms the baselines on four out of five datasets.

Let us first analyze the performance of the different models. Based on the microaverage P@k

measure, our model outperforms all the other models on all the data sets except IMDB. LaHNet
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Table 8. P@k LastFM1

Train + Val. size Model
Train Val Test

Micro Micro Macro User Track Album Artist

LINE 20.8 20.6 20.4 15.9 5.6 26.0 14.5 17.4

10% HLP 98.7 38.1 38.4 30.0 9.9 47.8 27.2 35.1

MMDW 58.4 25.1 25.3 19.6 7.4 32.9 17.4 20.7

Graffiti 100 40.1 40.0 31.4 10.6 49.0 28.1 38.1

LaHNet 100 39.5 39.0 29.2 9.5 50.7 30.8 25.9

LINE 20.5 20.9 20.5 17.0 10.1 25.9 14.4 17.5

30% HLP 98.9 50.2 49.7 40.0 17.2 60.5 37.7 44.8

MMDW 60.0 32.6 32.4 25.9 12.9 42.1 22.8 25.6

Graffiti 100 50.8 50.3 40.4 17.2 61.7 36.2 46.5

LaHNet 100 56.6 55.6 43.6 15.3 67.1 44.7 47.3

LINE 20.5 20.5 20.5 17.0 10.3 26.0 14.4 17.5

50% HLP 98.8 51.9 52.1 42.3 19.4 63.1 40.2 46.4

MMDW 60.5 34.2 34.2 27.6 15.1 44.6 24.1 26.6

Graffiti 100 53.2 53.5 43.2 19.1 65.4 39.5 48.7

LaHNet 100 59.2 59.3 46.9 16.8 70.4 47.8 52.7

Table 9. P@k LastFM2

Train + Val. size Model
Train Val Test

Micro Micro Macro User Track Album Artist

LINE 17.5 17.4 17.5 15.3 13.8 20.1 12.2 15.1

10% HLP 98.2 43.5 43.4 35.6 26.6 51.7 29.7 34.6

MMDW 31.6 15.9 15.8 12.6 11.4 20.3 10.4 8.4

Graffiti 100 44.4 44.3 35.8 25.9 53.1 29.3 35.0

LaHNet 100 44.5 44.5 30.9 11.6 56.7 30.9 24.5

LINE 17.5 17.5 17.5 15.5 14.3 20.2 12.2 15.1

30% HLP 98.2 50.0 50.0 41.8 31.5 58.4 37.9 39.3

MMDW 36.0 23.0 23.1 18.5 15.1 28.7 16.8 13.4

Graffiti 100 53.9 54.0 43.7 31.9 64.5 38.2 40.2

LaHNet 99.8 57.3 56.9 45.4 27.6 66.8 45.0 42.1

LINE 17.5 17.6 17.5 15.4 14.2 20.2 12.2 15.1

50% HLP 98.2 51.7 51.9 43.6 33.2 60.4 39.9 41.0

MMDW 35.3 25.8 26.0 20.6 14.9 31.7 19.5 16.4

Graffiti 100 56.8 57.0 46.5 34.4 67.7 41.8 42.4

LaHNet 100 59.6 59.5 47.8 29.0 69.3 47.7 45.1

outperforms (or is close to for IMDB) Graffiti, HLP, and MMDW with on average over all the

settings, +2.4 points for DBLP (see Table 6), +3.0 for FlickR (see Table 7), +3.6 for LastFM1

(see Table 8), +1.9 for LastFM2 (see Table 9) and −0.8 for IMDB (see Table 10) compared to the

best competitor. The behavior of the models is slightly different according to the datasets. On

DBLP, LaHNet is superior to all the other models for all the settings (10%, 30%, 50% of labeled

data used for training). For FlickR, LaHNet is better at (10%, 30%) and is similar to Graffiti and

HLP for 50%. On the LastFM datasets, LaHNet is better at 30% and 50% while all the supervised
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Table 10. P@k IMDB

Train + Val. size Model Train Val Test

LINE 38.7 38.6 38.6

10% HLP 100 39.6 39.7

MMDW 32.9 31.9 31.8

Graffiti 100 44.9 44.9

LaHNet 94.1 44.9 44.7

LINE 38.6 38.5 38.6

30% HLP 100 47.7 47.7

MMDW 32.9 32.4 32.5

Graffiti 100 49.6 49.6

LaHNet 99.4 49.0 48.8

LINE 38.6 38.6 38.6

50% HLP 100 50.4 50.4

MMDW 32.5 32.3 32.4

Graffiti 100 51.3 51.3

LaHNet 99.5 50.3 50.1

Table 11. Comparison of the Evolution of P@k Performance between LaHNet (LHN) and
the Best Baseline When Increasing the Training + Validation Size (TVS)

Dataset DBLP LastFM1 LastFM2 FlickR IMDB

Model LHN Graf. LHN Graf. LHN Graf. LHN HLP LHN Graf.

TVS 10% 32.1 30.9 39.0 40.0 55.6 50.3 31.9 26.3 44.7 44.9

TVS 10 to 30% +9.1 +7.6 +16.6 +10.3 +12.4 +9.7 +17.1 +22.5 +4.1 +4.7

TVS 30 to 50% +3.2 +2.7 +3.7 +3.2 +2.5 +3.0 +5.3 +7.0 +1.3 +1.7

models are similar at 10%. On IMDB, Graffiti and LaHNet have similar performance with a slight

advantage to Graffiti. The IMDB dataset is specific since only movies have labels, hence LaHNet

has no advantage over homogeneous models. Graffiti shows a slight advantage over HLP since it

explicitly models the 2-hop relations occurring in this dataset.

MMDW did not perform well for most datasets; since this model has some similarities with

ours, it is interesting to understand why. The algorithm was initially evaluated on small datasets

(around 2,000 nodes) and does not scale well in our experiments on large datasets like LastFM2 and

IMDB with millions of nodes. It has been designed for monolabel classification and the extension

to multilabel does not perform well. Finally, in DBLP, MMDW did work better when the amount of

training data was important; however, even in that case the performance did not reach the one of

Graffiti or LaHNet. The difference may be explained by the following facts: (1) We have a different

way to learn from the graph structure, using distance rather than inner product; (2) we learn to

associate a weight with each relationship; and (3) our optimization scheme is simpler since [42]

bias their learning by using the SVM learned weights, rather than learning with a single objective.

Table 11 shows the performance evolution at different training and validation set sizes (TVS)

for LaHNET and the most competitive baseline.

With respect to the datasets, we can distinguish two groups: the three datasets DBLP, LastFM1,

and LastFM2 and the two datasets FlickR and IMDB. For the first group, the performance increase

for LaHNet is higher than for Graffiti even if LaHNet already outperforms Graffiti. This shows that
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Table 12. Effect of Learning the Relation-Specific Weights wr for FlickR

Train size Model
Train Val Test

Micro Micro Macro User Photo

10%
Without 99.6 29.6 29.3 29.1 28.6 29.5

With 99.3 31.8 31.9 31.9 31.8 32.0

30%
Without 99.9 49.2 48.4 43.6 32.5 54.7

With 100 50.1 49.0 44.3 33.3 55.3

50%
Without 99.4 55.1 54.0 47.9 33.7 62.0

With 99.9 55.8 54.3 48.2 33.9 62.3

Note: Performance is expressed as microprecisions and macroprecisions as indicated, perfor-

mance for individual relations is microprecision—see text for further explanation.

in this case, for low training set size, LaHNet takes greater benefits of additional training data com-

pared to Graffiti. The reverse holds for the second group: for IMDB the increases are comparable

and LaHNet remains slightly below Graffiti, for FlickR, LaHNet outperforms HLP for all training

set sizes, but the gap between HLP and our model decreases when the training data increases.

While the models are optimized for microaverage P@k, macroaverage P@k gives a complemen-

tary indication. Macroprecision is below microprecision for all the models, but globally the models

rank similarly for both measures. Macroprecision shows that underrepresented types, e.g., users

on the LastFM datasets, have low performance. Note that LaHNet is below Graffiti and HLP for

these node types, probably because the number of parameters per class is higher for LaHNet.

4.6 Importance of the Relations’ Weights

Let us now analyze the role of the relation-specific weights wr in the model. When there is only

one type of relation like DBLP, there is nothing to learn. For the other datasets, learning the wr

significantly improves the performance. We discuss below each dataset in turn, and we denote

wA→B the weight of the relation from node type A to node type B.

4.6.1 FlickR. After convergence the weights are almost equal on average: wuser→photo = 0.53

and wuser→user = 0.47 for the two relation types involving users. Actually, one can expect close

weights as users follow users who publish photos they like, which might be on average the same

type as their own photos. The results of the two models are reported in Table 12. Even with such a

small average difference between the two types of weights, learning the wr improves the results.

It has a significant impact at small training set size (10%) with an increase of +2.6 compared to a

model with no weights, and the difference tends to vanish when the training set is increased.

4.6.2 LastFM. The LastFM datasets are the most interesting: there are four types of nodes with

several relations, the number of labels is larger than for the other datasets. Let us focus on the

relations involving users since this is the richer and most diverse group of relations with four

relation types. The results of the two models for LastFM1 and LastFM2 are reported respectively

in Table 13 and Table 14.

Learning the wr has an important impact on the user nodes performance. For LastFM1, there

is an improvement of +0.5 (train + validation size 10%), +5.6 (train + validation size 30%), and

+5.8 (train + validation size 50%) when learning the wr . The same holds for LastFM2, where an

improvement of +2.2 (train + validation size 10%), +6.3 (train + validation size30%), and +6.2 (train

+ validation size 50%) can be observed. Concerning user scores, the more training data, the bigger

the improvement.
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Table 13. Effect of Learning the Relation-Specific Weights wr for LastFM1

Train size Model
Train Val Test

Micro Micro Macro User Track Album Artist

10%
Without 99.9 36.4 36.3 27.2 9.0 48.4 26.2 25.3

With 100 39.5 39.0 29.2 9.5 50.7 30.8 25.9

30%
Without 99.8 54.2 53.3 40.3 9.7 65.8 42.7 42.9

With 100 56.6 55.6 43.6 15.3 67.1 44.7 47.3

50%
Without 99.7 56.6 56.7 43.2 11.0 68.8 45.6 47.6

With 100 59.2 59.3 46.9 16.8 70.4 47.8 52.7

Note: Performance is expressed as microprecision and macroprecision as indicated, performance for individual rela-

tions is microprecision—see text for further explanation.

Table 14. Effect of Learning the Relation-Specific Weights wr for LastFM2

Train size Model
Train Val Test

Micro Micro Macro User Track Album Artist

10%
Without 99.8 38.1 38.0 26.1 9.4 48.9 22.1 24.1

With 100 44.5 44.5 30.9 11.6 56.7 30.9 24.5

30%
Without 99.9 53.7 53.4 40.4 21.3 64.9 40.1 35.3

With 99.8 57.3 56.9 45.4 27.6 66.8 45.0 42.1

50%
Without 99.8 55.9 55.9 42.8 22.8 67.1 42.9 38.5

With 100 59.6 59.5 47.8 29.0 69.3 47.7 45.1

Note: Performance is expressed as microprecision and macroprecision as indicated, performance for individual rela-

tions is microprecision—see text for further explanation.

The role ofwr for the other relations is less important, however, it still makes a difference. On the

LastFM1 dataset there is a global improvement of +2.5 on average for all the train + validation sizes.

The same holds for the LastFM2 dataset, with an improvement of +3.5/+3.6 for train + validation

sizes 30% and 50%, and a greater improvement for a train size of 10% (+6.5).

If we make the parallel between the learned wr and the conditional entropy (see Figure 2 and

Table 4) one observes that, for relations of type user → •, the lower the entropy of a user label

Luser conditioned on the label of its neighbor L• is, the higher the coefficient of the corresponding

relation type is. The model then captures this dependency. For example, since the value (0.22) of

thewr coefficient for user → user is rather low, one can conclude that this relation is less relevant

than, for example, the relation user → track (0.28). One can explain this result by the fact that

the user → user relationship is more related to friendship and less to tastes compared to user →
track/album/artist . Looking at the music a user listens to will be more informative to infer what

kind of music a user likes than looking at what his friends listen to.

The evolution of wuser→• during the learning phase is reported on Figure 4. It clearly shows

that the proposed procedure is able to differentiate the weights according to their importance for

the classification task.

In conclusion, learning the relation specific weights clearly improves the classification results.

Comparing FlickR and LastFM, one can see that learning the relation weightswr allows capturing

the most important relation types for the inference task.
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Fig. 4. Evolution of wr values over training steps for all relations r involving users for LastFM2. At conver-
gence wuser→user = 0.22, wuser→track = 0.28, wuser→album = 0.25, wuser→artist = 0.25.

Fig. 5. LastFM2 corpus: Graph of the cosine between the 30 classifiers having the same string-wise label
(e.g., “pop”) for artists and tracks. For example, line 15 corresponds to pop_artist and column 15 to pop_track.
The lighter the square, the higher the scalar product.

4.7 Label Correlation on the LastFM2 Dataset

As mentioned in Section 4.1, labels for different types of nodes are supposed to be distinct even

when they have the same name (e.g., the label pop is not considered to be the same label for a

track and an artist). It is interesting to examine the relations between the representations of nodes

from different types with the same labels. Since these labels are strongly correlated, intuitively the

corresponding nodes should be in the same subspaces of the representation space. Since in our

experiments the classifier for each label is linear, measuring the similarity of the two separating

hyperplanes gives an indication on this correlation. We have plotted in Figure 5 the cosine of the

linear classifier weights learned for labels with the same name for two different node types of the

LastFM2 corpus. On Figure 5, the track label on the ith column corresponds to its artist counterpart

on the ith row. We first notice that the cosine product is nonzero in most cases, showing existing
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correlations between the different classifiers, and further emphasizing the importance of learning

a common latent representation space for nodes of different types.

Second, the diagonal values are all close to 1 for this example, so that the model has learned

these correlations and the latent representations of tracks labeled pop are in the same region of

the latent space as artists labeled pop, the same goes for the other labels. Other examples for the

LastFM2 dataset are provided in Appendix F (Figure 10) for different pairs of node types.

5 RELATED WORK

The need for graph node classification stems from several application domains, like web data min-

ing or biology. For example, web page classification may be formulated as a homogeneous graph

node classification task where nodes are web pages, edges between web pages are hyperlinks and

node labels are the web page topic.

Work in this domain first focused on homogeneous graphs, i.e., with only one type of node

and one type of relation. The analysis of more complex data, e.g., coming from social sources

or knowledge bases, where nodes may be of different types and share different and sometimes

multiple relations, requires new models and techniques. Heterogeneous graph nodes classification

is a recent trend and an open problem. We review below the main directions for graph nodes

classification.

Most of the models share the same basic intuition [15]: neighboring nodes have similar proper-

ties, e.g., they tend to be classified similarly. In the following, we distinguish works (i) that asso-

ciate with each node a classification score for each possible label, and propagate this information to

neighboring nodes (ICA, random walks and regularized models); (ii) representation-based models

that associate a vector in Rd with each node of the graph.

Iterative classification algorithms (ICA) [38] are extensions of classical inductive classification

schemes to relational data. They consist in iteratively building a local classifier at each node, using

as inputs both node characteristics and statistics on the node neighbors current labels. Standard

models, like Bayesian classifiers [30] or logistic regression [22], are used to perform the classifica-

tion task. Several variations and extensions of these ideas have been proposed. For instance, global

label distribution statistics can be taken into account through a maximum entropy constraint [35],

a label regularization loss [24], or KL-divergence [25]. As ICA methods can be heavily influenced

by the absence of links, Gallagher et al. [14] proposed a way to predict new links by connecting

unlabeled nodes to labeled ones to circumvents the potential graph sparsity. ICA methods have

been extended to multirelationship graphs, by estimating how labels propagate through each type

of relationship or type of nodes [34, 45], but dealing with multiple node and relation types is still

an issue for this family of methods.

Random walks have been used for graph nodes classification. Labels are propagated from labeled

to unlabeled nodes using the graph structure: each label has a given probability to be propagated

to the neighboring nodes, and the stationary distribution corresponds to the scores given to the

different labels. The most typical work, for homogeneous graphs, is that of Zhu et al. who pro-

posed HLP [53] which iterates until convergence the walk Y ← T · Y , where Y is the matrix of

predicted labels, and T characterizes the transition matrix of the graph. This branch of research

has motivated a large number of extensions, as for example taking into consideration more specific

information, such as graph communities [12] or label distribution [29]. For heterogeneous graphs,

there are two approaches that amount at modifying the random walk by taking into account dif-

ferent types of nodes and relationships. One defines specific random walks [52] based on input

features and graph statistics. The specific definition of the random walk has to be done manually,

which is a clear limit of this type of approach. General models, like Graffiti [2], are based on simple

extensions of the random walk process: Graffiti is based on two intertwined random walks, the first
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one operating between nodes of the same type which are directly connected in the graph while

the other one is defined between nodes of the same type, which are connected through another

node type. While simple, Graffiti is very competitive: according to our experiments with different

models, it represents the state of the art in the domain and is thus one of our baselines.

Regularized models, while related to random walks, are different since the objective is formu-

lated as loss optimization when random walks do not make use of an explicit loss. A diffusion

equation appearing as a regularization term in this loss propagates through connected nodes. For

instance, the authors in [50] use a regularization inspired by random walks, and the authors in

[37, 44] minimize the graph-based distance between the nodes using graph Laplacian matrices.

Recently, the authors in [48] tackled the homogeneous multirelational classification case, by as-

suming that relations have varying levels of informativeness, and, associated with them, weights

that are learned. Models for heterogeneous graphs have been proposed in the case where the label

set is the same for all node types [17, 19]. In that case, simply ignoring the node type allows one to

use frameworks developed for the homogeneous case [17]. The authors in [19] have nevertheless

made a step toward heterogeneous networks by introducing weights on relations between node

types, and thus differentiating in some way the different types of nodes. Our model also incorpo-

rates a regularization term in the loss function, but contrarily to the models cited previously, our

regularization does not directly involve classification scores but learned representations.

Representation learning and deep learning. Representation learning [5] encompasses different

families of methods aimed at automatically building relevant representations from data. This type

of approach, popularized with deep learning, is now widespread in several domains. For classifi-

cation, it has been used in a supervised setting in many different contexts such as text [40], image

[51], video, time series [10, 46] classification and extreme classification [7].

In the context of graphs, these approaches amount at learning a representation in Rd of each

node of the graph. This representation can then be used as an input for any appropriate classi-

fier. Inspired from deep learning techniques, the authors in [13, 27] tackle the homogeneous graph

node classification using Recurrent Neural Networks (RNN). They transform each set of neighbors

for a given node into a sequence of their attributes and use a RNN to predict the label of the last

(test) node of the sequence. The authors in [36] use a neural network, where the hidden repre-

sentations are computed based on the input graph. Contrary to our model, these methods require

node characteristics (inductive learning).

Several works focused on learning a node representation without supervision. Inspired by work

on word representation learning [26], the authors in [33, 41] learn distributed representations

of graph nodes using a random walk. In LINE, [41], the joint probability of neighbor nodes is a

function of the inner product of their representations. In DeepWalk [33], the authors propose to

sample paths within the graph, and then use them as sentences fed to SkipGram [26] to learn the

representations of the nodes.

Based on this work, the authors in [9] learn node representations that incorporate global and

local structural information. These representations can then be used as inputs to a classifier. Simi-

larly, the authors in [16] proposed an unsupervised learning model that maximizes the likelihood

of preserving a network neighborhood of nodes. In practice, this neighborhood is defined through

a biased random walk. Deep learning architectures have been used in recent works with convolu-

tional neural networks [32] or auto-encoders [43]. In the experimental section, we compared our

model to LINE [41], which is a representative instance of these unsupervised models, and we have

shown that for classification, unsupervised representations did not lead to good performance.

Finally, our model belongs to the class of semisupervised transductive representation-based

models. Closely related to our model are the works of [42, 47], both based on DeepWalk [33]. Yang

et al. [47] have recently proposed a model that learns two different representations for a node, one
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from features associated with the node (e.g., the text of a web page), and another one from the

graph alone. They try to predict the neighboring node representation, similarly to the SkipGram

[26] model for text. The main focus of this model was to take into account external information,

while in our work the focus is on handling various types of relationships between nodes without

considering node characteristics. Tu et al. [42] proposed a Maximum-Margin Deep Walk (MMDW)

procedure that couples DeepWalk with an SVM. There are several differences between our model

and MMDW: their regularization term is based on an inner product and not on a distance like

ours, our model uses a simpler optimization procedure and learns to weight the relationship. We

compared with this model in our experiments, and have shown that our choices lead to improved

performance in classification.

6 CONCLUSION

We have introduced a representation-based model for the challenging task of heterogeneous

graph node classification. This model, LaHNet, learns, for each node and label, a latent represen-

tation in a vector space. It also learns relation specific weights that determine how informative

the relations between different types of nodes are for the classification task. We introduced

a continuous optimization hyperparameter scheme for simultaneously learning the different

parameters of the model.

Experimental results show that LaHNet was able to learn correlations between labels of dif-

ferent types of nodes, thus notably improving the class label inference. We performed extensive

experiments and showed that LaHNet works well compared to competing methods [3, 41, 53] on

five different real-word datasets (DBLP, FlickR, LastFM, and IMDB).

APPENDIXES

A COMPUTING THE DERIVATIVE OF THE LOSS WITH RESPECT TO wr

In this section, we show how the loss of Equation (5) can be derived with respect to a hyperparam-

eter wr . Let us derive a closed form for ∂LW

∂wr
. First, using the chain rule, the derivative of LW (w)

with respect to a given weight wr is

∂LW

∂wr
=
∂LW

∂Θ

∂Θ

∂wr
+
∂LW

∂z

∂z

∂wr

=
∑
�∈L

d∑
k=1

∂LW

∂Θ�k

∂Θ�k

∂wr
+
∑
�∈L

d∑
k=1

∂LW

∂z

∂z

∂wr
,

(8)

where ∂Θ
∂wr

quantifies how the classifier parameters change when wr changes, and ∂z

∂wr
how the

node representation changes when wr changes. In the following, we first make a hypothesis to

simplify the above equation by discarding the first term, and then show how ∂z

∂wr
can be computed.

We first suppose that the parameters of the classifiers will be much less affected by a change

of wr than the node representations. This is a reasonable assumption since θ is only indirectly

impacted by wr while z directly depends on wr . This was, moreover, confirmed experimentally.

Formally,

�
�
�
�
�

∂Θ

∂wr

�
�
�
�
�

�
�
�
�
�
�

∂z

∂wr

�
�
�
�
�

.

We then suppose that ∂LW

∂Θ and ∂LW

∂z
have roughly the same order of magnitude. The rationale

is that both Θ and z will have a strong impact on classification error rate: the first by moving the

hyperplane, the second by moving all the nodes in the latent space. Under these two assumptions,
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we can approximate the partial derivative of Equation (8) as

∂LW

∂wr
≈ ∂LW

∂z

∂z

∂wr
. (9)

By definition, zi (w) is the representation of node ni when the regularized loss of Equation (1) is

minimized. In that case, since the nodes used for training the parameters and the hyperparameters

are disjoint, i.e.,NW ∩NC = ∅, we can see that nodes inNW are only present in the regularization

term LG . Based on this, by zeroing the gradient ∇zi
L of the regularized loss L with respect to a

node i ∈ NW , we can express zi (w) for i ∈ NW as an explicit function of w :

zi (w) =

∑
r ∈R wr

∑
j ∈N r

i
zj (w)ϕi j∑

r ∈R wr
∑

j ∈N r
i
ϕi j

. (10)

Since in the above equation the zj (w) depend on the weights w, we would not be able to compute

explicitly ∂z

∂wr
. Our last assumption is that the nodes in NC will not change their position for a

small variation of wr . While this is not true in general, this is sensible since (1) most of the nodes

are not in NC , and (2) the classification cost could prevent them from moving. In that case, zi (w)
only depends on w, and we can derive a closed form for ∂z

∂wr
.

Under these hypotheses, by plugging Equation (10) into Equation (9), the derivative of the un-

regularized loss with respect to a weight wr can then be written as
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≈
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∑
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ψiyi�
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r r ′
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(11)

with

Sr
i =

∑
j ∈N r

i
zjϕi j∑

j ∈N r
i
ϕi j

and Ar r ′
i =

∑
j ∈N r ′

i
ϕi j∑

j ∈N r
i
ϕi j
. (12)

Finally, zi (w) in Equation (10) is invariant to a global scaling of wr , for r ∈ R, leading to an

infinite number of possible solutions. In order to avoid numerical problems, we normalize the wr

to force a unique solution. We used the following normalization:

for any node type t ,
∑

r :t→•
wr = 1, (13)

where r : t → • indicates all the relation types r from a node of type t to any other type of node •.

B CONSTRUCTION OF THE LASTFM DATASETS

The LastFM datasets were extracted for this work, so we describe succinctly the procedure us-

ing the methods of the LastFM API. We selected randomly a set of 10 users, and collected

user friends using the User.getFriends method. We stopped when reaching a given limit

(1,000 users for LastFM1 and 20,000 users for LastFM2). Then, for each user of our graph we

fetched his top tracks, albums and artists (methods User.getTopAlbums User.getTopArtists
and User.getTopTracks). At last, we labeled tracks, albums and artists according to the top tags

LastFM users have given to them using the methods Track.getTopTags, Artist.getTopTags,

and Album.getTopTags. For the users, we chose the top tags they added with the method

User.getTopTags.
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C PLOTS OF INTERDEPENDANCIES

Fig. 6. Plots illustrating the interdependencies between labels on the DBLP corpus. A gray square means
that there is no relation between the corresponding node types.

Fig. 7. Plots illustrating the interdependencies between labels on the FlickR corpus.
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Fig. 8. Plots illustrating the interdependencies between labels on the LastFM2 corpus.
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D CONDITIONAL ENTROPIES

Table 15. Conditional Entropies H (Ly |Lx )
for the DBLP Corpus

Table 16. Conditional Entropies H (Ly |Lx )
for the FlickR Corpus

Table 17. Conditional Entropies H (Ly |Lx ) for
the Lastfm2 Corpus

E CUMULATIVE SUM OF CONDITIONAL PROBABILITIES

Fig. 9. Plots of the average of the cumulative sum of conditional probabilities P (Ly |Lx ) (with cumulative
percentages on the x-axis) for all relation types on all datasets.
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F GRAPHS OF CLASSIFIER INNER PRODUCT FOR THE LASTFM2 DATASET

Fig. 10. LastFM2 corpus: Graph of the cosine between the classifiers having the same string-wise label (e.g.,
“pop”) for two different node types.
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