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ABSTRACT
In the XML retrieval paradigm, document fragments may be
returned as answers to a user query. This information being
more specific than whole documents may therefore reduce
the user effort for finding relevant information. However,
since XML documents are composed of nested elements,
many of which being possibly relevant to the user informa-
tion need, retrieval systems must take care of the overlap
between returned elements. In this paper, we consider this
filtering problem. We first review related work from the IR
literature. We then propose a framework for XML retrieval
filtering and describe some ideas for this filtering process.

1. INTRODUCTION
With the widespread use of the eXtensible Markup Lan-
guage (XML) structured document representations formats
like e.g. DocBook have become popular or have been adopted
as standards. New tools are being developed in order to
manage, store and retrieve information from XML docu-
ments. In the information retrieval (IR) community, XML
Retrieval has been considered as an important extension to
standard IR: two SIGIR workshops were held on this sub-
ject [4, 2] and INEX (INitiative for the Evaluation of XML
Retrieval) is now in its third year.

Within the new paradigm of XML IR, retrieval systems
should retrieve the most specific elements for a query, and
not the whole document anymore. The underlying idea is to
reduce the ratio of irrelevant information the user sees, as
in passage retrieval. User satisfaction not only depends on
the ratio of irrelevant information but also on the amount
of time (s)he has to spend consulting redundant informa-
tion. In flat document IR, this is related to the problem
of novelty: a document can contain information which was
already seen by the user. In the XML framework, there is
an additional form of redundancy which is related to the

logical organization of the document itself: nested elements
(e.g. a paragraph and its enclosing section) can be returned
when both have been scored as relevant elements. The user
will then be presented twice with the same information (the
content of the paragraph).

An analysis of INEX 2003 participants’ submissions showed
that in average 28 % of elements in the ranked list returned
by the participants search engines are duplicate, i.e. are ei-
ther an ancestor or a descendant of an element already in
the list (see fig. 1). This form of redundancy is then par-
ticularly damageable and the problem of overlap has to be
addressed. We consider the subject of this paper. In this
paper, we examine different possibilities for eliminating this
type of redundant information. We consider this as a fil-
tering task: a ranked list of document element has been
retrieved from an XML collection and redundant informa-
tion has to be reduced. Filtering is not performed by the
retrieval engine itself but operates on the retrieved list.

The article is organized as follows. In section 2, we de-
scribe related works, some of which being recent works on
XML filtering. We give a formal description of the problem
in section 3, and present our propositions in section 4. In
section 5, we describe some experiments which could allow
comparing different propositions.

2. RELATED WORK
Let us first examine how redundancy has been considered
in different IR settings like passage retrieval and hypertext
IR.

In “flat document” IR the aim is to retrieve documents that
fulfill a user information need. It has been argued that it
would be useful to present to the user compact lists in which
documents with a similar content have been removed [3, 20,
18]. This idea of novelty/redundancy detection has been
extended to the case of passage retrieval e.g. at the sen-
tence level ([16]). Novelty detection is difficult to handle
while computing the relevance score of a document. All ap-
proaches to novelty detection consider as input a ranked list
of documents output as relevant by an IR system. From
that point, two different approaches have been used in the
literature:

Adaptive filtering documents are considered one after the



other, in decreasing order and a binary decision (keep
or remove) is taken for each document [20, 16].

Re-ordering new scores are computed for all documents,
by considering all documents already seen in the list [3,
18]

In order to detect novelty/redundancy, different techniques
have been proposed, ranging from simple ones (based on
word occurrences) to elaborate ones (modeling content by
language models or by graphsXX??).

XXreecrire Redundancy detection has also been used in the
clarification phase of the TREC HARD Track ([1]). Due
to limit of time that the user spends to give their relevance
judgment on answers, it is crucial for system to select some
representative snippets in order to get maximal feedback
information from user. These selection techniques are called
active feedback.

For hypertext IR, it is interesting to retrieve documents
which are entry points to relevant ones [8, 11]. Simple
techniques have been proposed for finding BEP (Best En-
try Point)documents. They are similar to those used for
adaptive filtering task. A simple one consists in removing a
document whenever there is an incoming link from another
document ranked higher in the list [8]. For hierarchically (or
tree) structured web sites, [11] propose to compare the score
of a document to its children (linked documents) scores and
a binary decision is taken.

In the context of a structured retrieval task, the seminal
work of Chiaramella et al. [5] made use of the notions of
specificity and exhaustivity of an element with respect to a
given query need. An element is specific if the only topics
it discusses are query topics. It is exhaustive if it answers
all aspects of the query need. They consider that for being
consistent, answers must be completely distinct one from the
other. If an element is exhaustive but not specific, then one
of its child can be both exhaustive and specific. Searching
for the most specific and most exhaustive elements is thus a
recursive process. This is an interesting idea, however, their
approach is purely logical and cannot be used in operational
systems.

With XML retrieval systems, only simple strategies have
been used for now. Some of them depend on the score value
of the document element, while others do not.

Cui et al. [7] proposed to merge overlapped results: if an el-
ement in a candidate set formed by the set of elements con-
taining at least one query term, contains another element,
then the former is removed. The deepest element is favored
with this selection method. Extensions of hypertext filtering
were proposed by Lalmas et al. [12, 10]. They proposed to
identify Best Entry Points (BEP) in documents with differ-
ent rules such as the ratio (relevant children)/children of an
element, the number of relevant consecutive siblings or the
average relevance value of each layer in the document tree.

Crestani et al. [6] propose to rescore ranked elements by
computing the expected utility (EU) of an element with re-
spect to the relevance of its parent. This EU value is com-

puted as follows. First, a utility value is assigned to each of
the eight following possibilities: the element is (is not) rele-
vant, the parent is (is not) relevant, the element is expected
to be shown to the user or not. Then, an expected utility
value is computed for the following two cases: the element is
presented to the user (EU+) or not (EU−). The new score

for an element can then be either EU+, or EU+ − EU
− or EU

+

EU−
.

Preliminary experiments on a small collection shown an im-
provement in term of mean average precision. However, the
values used for the computation of EU are empirical and the
metrics used are not fully adapted to XML retrieval evalu-
ation.

At INEX 2003 workshop, participants proposed different
methods aiming at overcoming this overlapping problem.
[13] suggested rules for merging local retrieved results while
[14, 15] used simple filtering of the ranked lists. [17] pro-
posed to select elements using a coverage criterion which is
computed with respect to the number of query terms in each
element. Evaluating the impact of these different strategies
is difficult for now. There are two main reasons for that.
First, the metrics used to evaluate XML retrieval systems
only reflect very indirectly this overlapping problem. Sec-
ond, it is difficult to make the distinction between the impact
of the retrieval system itself and that of the filtering module.

Experiments with XML IR have already shown that filtering
was an important problem. It has not been systematically
studied yet and only very basic heuristic attempts have been
tested for now. In the remainder of the article, we present
a series of ideas which could be used in order to study more
precisely the XML filtering problem. XXremove ??In gen-
eral, there were two kind of approaches: one tries to avoid
overlap by filtering out the list before retrieving elements,
the other tries to take into account global effects.

3. PROBLEM FORMULATION
We will now describe more formally the XML filtering prob-
lem.

3.1 Problem Description
We consider filtering a ranked list of document elements.
Each element has an associated score (RSV). The RSV of
an element should measure the quality of the element for
XML retrieval. In the following, we consider this RSV to
be an estimate of the probability that the element is both
specific and exhaustive.

The output of the filtering step will be a ranked filtered list.
This list should be consistent, i.e. should contain as few
redundant elements as possible. It should also be optimal,
i.e. highly relevant elements should have the higher scores.

3.2 Problem Analysis
In standard IR, retrieved documents are ranked by decreas-
ing order of relevance score for the given query (the RSV).
The implicit assumption is that the documents are inde-
pendent one from the other, this ranking principle does not
hold in cases where there is a large number of potentially
highly redundant relevant answers [3]. For XML retrieval,
there is the additional problem of nested elements. In the re-
mainder of this section, we describe the properties an XML
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Figure 1: Overlap (INEX’03 submissions)

document element should fulfill in order to be truly rele-
vant to an user. We also make some assumptions which are
necessary for practical implementations.

Assumptions
We suppose that the answers are ranked linearly since we
believe that despite the development of advanced visualiza-
tion tools, users will still make a preeminent use of simple
ranked lists.

We will suppose that each retrieved element is a meaning-
ful information unit which is somehow self-contained. This
implies that we will not consider the context of the element
but focus on the structural relationships of an element.

We will also suppose that the user fully reads each answer -
which is reasonable because of the above assumption. A
consequence of this assumption is that any descendant of an
element should be removed from the list since the user has
already seen it.

The user can stop after consulting a certain number of an-
swers. Highly relevant elements should therefore be ranked
first in the list: this is related to the optimality criterion
described later on.

Desiderata for answers
Answers are required to be consistent : users may be dis-
couraged from viewing further elements if they are presented
redundant information. They could also feel disoriented if
they are directed to nested parts of the same document.

We consider that the filtering process must be simple: de-
spite its importance with regard to the user effort, an XML
retrieval system is a complex system and filtering must not
take too much time.

The filtered list should be optimal : highly relevant elements

should be ranked first. This point is important since filtering
may remove some nested elements with a higher RSV. For
example, consider the case of a section with a RSV of 0.8
and its paragraph with a RSV of 0.6. If for some reason the
section is not present in the retrieved list, the paragraph
could be lost for the user as it has a smaller score. Since
this paragraph “represents” its section, it should be ranked
higher. While it is easy to check if an element is enclosed
in another, it is not simple to determine an optimal policy.
It should be a compromise between the RSV, the structural
relationships with other elements and the user preferences.

3.3 Processing Procedure
A filtering process can be decomposed into three distinct
optional phases: (1) initial rescoring, (2) filtering and (3)
final rescoring. Phase (1) will allow to include some infor-
mation about the relations between the document elements.
Phase (2) is a purely logical process: a binary decision (keep
or remove) is taken for each element. Phase 2 ensures the
list is consistent. The purpose of the last phase (3) is to en-
sure the optimality of the list. Existing attempts to filtering
either performed phase (1) or (2). None of these approaches
did both. The optimality problem -phase (3)- has not been
considered for now.

4. PROPOSITIONS
In this section, we make concrete propositions that we plan
to experiment in a near future. We follow the different
phases which have been described before.

4.1 Re-scoring
If the RSV is to be considered as the probability that an
element is both exhaustive and specific, it is necessary to
transform the score. The motivation here is to make some
preprocessing before we filter out the list. This phase is thus
tightly coupled with the next one, so one should care about
the filtering process before one selects the rescoring method.
In some cases, it is also possible to skip this step.

4.1.1 Utility theory
The idea is to use the EU as defined in [6] whenever the
underlying model outputs RSV that are probabilities. We
plan to do further experiments in order to fully investigate
this approach: in particular, we plan to try machine learning
techniques to learn the utility values for the fact of showing
an element (or not), knowing that the element is relevant (or
not) and that its parent is relevant (or not). We denote this
approach RS1.

One of our model is based on Bayesian Networks [15]. In
this model, an element can be in three different and distinct
states: not relevant, too big (exhaustive but not really spe-
cific) or exact (exhaustive and specific). For each element,
we thus have two values (the third one is linked to the two
previous) and not one. The extra information brought by
the “too big” state could be used to transform our scores
with more expressiveness than with a single score. We plan
to use the EU methodology to transform the probabilities
outputed by the Bayesian Network model (RS2).

4.1.2 Redundancy rescoring



It is also possible to consider the list order while computing
the new scores. The general idea is to move elements one by
one from a given set (the list of retrieved elements) to an-
other (the set of rescored elements). Each selected element
maximise a criterion which is a balance between relevance
and redundance: the value of the criterion for a selected
element is its new score.

Let us consider the sets Et of n elements to rescore and the
set E′

t of rescored elements at a given time t. Note that at
the begining of the process (t = 0) E′

0 = ∅ and that at the
end of the process (t = n) En = ∅.

We have to suppose that the relevance of an element to
a given query is independent from the redundance of this
element with respect to a given set of elements. At given
time t, the RSV value of an element e in Et is:

RSV
(1)

t
(e) = λRSV (e, q) − (1 − λ) max

e′∈E′

t

Red(e, e′)

where λ ∈ [0, 1] is a parameter, RSV (e, q) the score of the
retrieval system for element e with respect to the query q

and Red(e, e′) is the redundancy of elements e with respect
to e′. The higher is the latter value, the more redundant the
element e is.

The element e∗ with the highest value RSV
(1)

t
is selected:

E′

t+1 = E′

t ∪ {e∗} and Et+1 = Et \ {e
∗}.

The process is then reiterated until the set Et is empty (RS3).

Zhai et al. pointed out that the linear combination is only
meaningful when similarity measures RSV () and Red() are
in the same scale [19]. It is unfortunately not the case here

why? . We therefore use another criterion as defined in [19]

which is more intuitive (RS4)

RSV
(2)
t

(e) = p(Rel|e, q)(p(Red|e,E′

t) − ρ)

where ρ is a parameter that represents the cost ratio of user
seeing an irrelevant element and of user seeing a relevant
but redundant element, ρ ≥ 1.

4.2 Filtering
In this section, we present filtering methods. We distinguish
two different kind of filtering. The first one is related to
adaptive filtering, while the other one is based on a recursive
processing of the document tree. In the remainder of this
section, we are interested in both strict (no overlap) and
tolerant (some overlap) filtering.

4.2.1 List filtering
In this section, we present filtering methods which consider
elements in the list one by one, begining with the first one
which have the highest RSV. Let us denote E = (e1, ..., en)
the ordered list of n elements which is the output of the
retrieval system and FLi the filtered list after i iterations
of this process. The latter list can thus contain up to i

elements and RSV (ei) ≥ RSV (ei+1). The filtering process
ends when FLn is known.

We will also denote by anc(e) (resp. desc(e)) the set of an-

cestors (resp. descendants) of an element e in the document
tree.

The rules we plan to experiment are as follows:

Rule F1 (no descendant). With this rule, an element is
removed whenever its ancestor is already in the filtered
list. This is related to the assumption we made about
the user behaviour: when (s)he consults the list, (s)he
reads elements entirely. (S)he thus have already been
reading the content of the element if its ancestor is in
the list. Formally, if anc(ei) ∈ FLi−1 then the element
is not added to the list.

Rule F2 (no ancestor). This rule is symmetric to rule R1:
an element will not presented to the user if it one of
its descendant is already in the list. For example, if a
section contains only one paragraph, then if we present
the paragraph to the user, we don’t want to present
the section. Formally, if desc(ei) ∈ FLi−1 the element
is not added to the list. While this rule can be useful
to remove redundant information, we believe that this
rule is too harsh when the element already in the list is
really small compared to the element which is filtered:
consider for example the case of a document and a
small passage in italics.

Rule F3 (some ancestors) We want to relax the rule R2,
in order to allow some overlap in some cases. We have
first to define the redundancy of ei with respect to ele-
ments of FLi−1. If the redundancy value is sufficiently
high, then we filter out the element. The redundancy
value of ei wrt FLi−1 is estimated as:

Red(ei, FLi−1) = max
e∈F Li−1

Red(ei, e) (1)

where redundance of an element ei with respect to e

is proportional to the effort need to read the former
given the latter:

Red(ei, e) = f

„

length(ei)

length(e)

«

(2)

where length() is the length measured in an appropri-
ate unit (number of words, number of caracters, etc.)
If Red(ei, FLi−1) < RedThreshold then the element fil-
tered out. Here, RedThreshold is a parameter which
can be fixed empirically or learnt from data.

4.2.2 Filtering on the document tree
In the previous section, we have shown how it is possible to
avoid some overlap, if not all, using an approach which is
related to adaptive filtering. It is also possible to process
a document after another, and to select a set of elements
within that document for which there is no overlap.

For each node, starting with the root of the document tree,
we take a binary decision: either we keep this element (and
we do not consider its children) or we return at least one
of its descendants by applying the same rule to each of its
children. This algorithm guarantees the non-overlapping of
selected elements as the recursive process is stopped when-
ever we return an element.



The criterion used to take the binary decision can be simple.
For each element e in the tree, e is not added in the list if:

Rule F4 if the ratio of relevant elements among its children
is superior to a given threshold, or

Rule F5 if the average score of relevant elements is superior
to a given threshold.

These criterion are simple enough to be experimented. How-
ever, it is possible to do better. Our idea is to use an existing
metric and try to optimise the list of returned elements ac-
cording to this measure. We choose the Expected Ratio of
Relevant Units which is a generalisation of standard recall
in the context of XML retrieval. We thus denote GR this
measure. We then suppose that the probability that an el-
ement is consulted by the user is inversely proportional to
the score of this element:

P (e is seen) ∝ RSV (e, q)

This probability is used when computing the measure GR.
We can then compute the expected value of GR if only the
parent is in the list and compare it to the expected value
of GR if only the children are in the list. If the latter is
superior to the former, the element is discarded and the
recursive process is iterated over its children (F6).

4.3 Final scoring
For the final score, we can apply two different strategies.
The first one is to keep the score (FS1), the other one
is to get the maximum RSV of elements which were re-
moved (FS2).

5. PROPOSED EXPERIMENTS
Some of these methods were already used in experiments [14,
15]. As stated before, it is difficult to know if a given filter-
ing is performing well as the results are not independent of
the retrieval system performance. In order to examine the
respective capabilities of filtering methods, we need to know
how the retrieval system is working.

However, this is a rather difficult task. We thus propose to
simplify the preliminary experiments: as we want more con-
trol over experiments, we simply do not use any retrieval sys-
tem. We rather define typical systems by computing scores
based upon the assessed relevance of these elements. The
INEX scale [9] used to assess elements with respect to a
given query has two dimensions: the exhaustivity and the
specificity. We thus need to transform an assessment into a
score. For the sake of clarity, we will not expose here the
planned transformation.

In order to simulate the behaviour of a search engine, we will
try to add some noise. As this noise should be related to real
noise, we will compute for a sample of retrieval systems the
distribution of scores with respect to a given assessment.
The deterministic transformation of an assessment a into
a RSV will then be followed by a random sampling with
respect to the probability distribution computed for this as-
sessment.

As we want extensive experiments, we will try every com-
patible combination of rules; parameters will be either fixed
empirically or learnt from data.

6. CONCLUSION
In this article, we presented our planned work on XML fil-
tering. We first motivated the XML filtering: it reduces the
user effort to access relevant information as redundant ele-
ments are removed from the list presented to the user. Ex-
periments on the INEX’03 dataset have shown that a high
percentage of elements are redundant.

We made several assumptions on the user behaviour and
described what are our requirements for XML filtering. We
have shown that the filtering is a processing procedure which
is composed of three phases: re-scoring, filtering and final
scoring. For each of these phases, we proposed different tech-
niques which we plan to experiment. The experiments will
first investigate the effect of the different filtering compo-
nents in an “ideal” environment, to clearly distinguish what
the filtering from the scoring process.
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