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ABSTRACT

A neural model for representing an input sequence over a
vocabulary in a ranker of a neural information retrieval
model. An input sequence is embedded based at least on the
vocabulary. An importance of each token over the vocabu-
lary is predicted with respect to each token of the embedded
input sequence. A predicted term importance of the input
sequence over the vocabulary is determined by performing
an activation over the embedded input sequence.
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NEURAL RANKING MODEL FOR
GENERATING SPARSE REPRESENTATIONS
FOR INFORMATION RETRIEVAL

PRIORITY CLAIM

[0001] This application claims priority to and benefit from
U.S. Provisional Patent Application Ser. No. 63/266,194,
filed Dec. 30, 2021, which application is incorporated in its
entirety by reference herein.

FIELD

[0002] The present disclosure relates generally to machine
learning, and more particularly to methods and systems for
training neural language models such as ranking models for
information retrieval.

BACKGROUND

[0003] For neural information retrieval (IR), it would be
useful to improve first-stage retrievers in ranking pipelines.
For instance, while bag-of-words (BOW) models remain
strong baselines for first-stage retrieval, they suffer from the
longstanding vocabulary mismatch problem, in which rel-
evant documents might not contain terms that appear in the
query. Thus, there have been efforts to substitute standard
BOW approaches by learned (neural) rankers.

[0004] Pretrained language models (LMs) such as those
based on Bidirectional Encoder Representations from Trans-
formers (BERT) models are increasingly popular for natural
language processing (NLP) and for re-ranking tasks in
information retrieval. LM-based neural models have shown
a strong ability to adapt to various tasks by simple fine-
tuning. [.M-based ranking models have provided improved
results for passage re-ranking tasks. However, LM-based
models introduce challenges of efficiency and scalability.
Because of strict efficiency requirements, LM-based models
conventionally have been used only as re-rankers in a
two-stage ranking pipeline, while a first stage retrieval (or
candidate generation) is conducted with BOW models that
rely on inverted indexes.

[0005] There is a desire for retrieval methods in which
most of the involved computation can be done offline and
where online inference is fast. Learning dense embeddings
to conduct retrieval using efficient approximate nearest
neighbors (ANN) methods has shown good results, but such
methods have still been combined with BOW models (e.g.,
combining both types of signals) due to their inability to
explicitly model term matching.

[0006] There has been a growing interest in learning
sparse representations for queries and documents. Using
sparse representations, models can inherit desirable proper-
ties from BOW models such as exact-match of (possibly
latent) terms, efficiency of inverted indexes, and interpret-
ability. Additionally, by modeling implicit or explicit (latent,
contextualized) expansion mechanisms, similarly to stan-
dard expansion models in IR, models can reduce vocabulary
mismatch.

[0007] Dense retrieval based on BERT Siamese models is
a standard approach for candidate generation in question
answering and information retrieval tasks. An alternative to
dense indexes is term-based ones. For instance, building on
standard BOW models, Zamani et al. disclosed SNRM, in
which a model embeds documents and queries in a sparse
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high-dimensional latent space using 1.1 regularization on
representations. However, SNRM’s effectiveness has
remained limited.

[0008] More recently, there have been attempts to transfer
knowledge from pretrained LMs to sparse approaches. For
example, based on BERT, DeepCT (Dai and Callan, 2019,
Context-Aware Sentence/Passage Term Importance Estima-
tion For First Stage Retrieval, arXiv:1910.10687 [cs.IR])
focuses on learning contextualized term weights in the full
vocabulary space, akin to BOW term weights. However, as
the vocabulary associated with a document remains the
same, this type of approach does not address vocabulary
mismatch, as acknowledged by the use of query expansion
for retrieval.

[0009] Another approach is to expand documents using
generative methods to predict expansion words for docu-
ments. Document expansion adds new terms to documents,
thus fighting the vocabulary mismatch, and repeats existing
terms, implicitly performing reweighting by boosting impor-
tant terms. Current methods, though, are limited by the way
in which they are trained (predicting queries), which is
indirect in nature and limits their progress.

[0010] Still another approach is to estimate the importance
of each term of the vocabulary implied by each term of the
document; that is, to compute an interaction matrix between
the document or query tokens and all the tokens from the
vocabulary. This can be followed by an aggregation mecha-
nism that allows for the computation of an importance
weight for each term of the vocabulary, for the full document
or query. However, current methods either provide repre-
sentations that are not sparse enough to provide fast
retrieval, and/or they exhibit suboptimal performance.

SUMMARY

[0011] Provided herein, among other things, are methods
implemented by a computer having a processor and memory
for providing a representation of an input sequence over a
vocabulary in a ranker of a neural information retrieval
model. The input sequence may be, for instance, a query or
a document sequence. Each token of a tokenized input
sequence is embedded based at least on the vocabulary to
provide an embedded input sequence of tokens. The input
sequence is tokenized using the vocabulary. An importance
(e.g., weight) of each token over the vocabulary is predicted
with respect to each token of the embedded input sequence.
A predicted term importance of the input sequence as a
representation of the input sequence over the vocabulary by
performing an activation over the embedded input sequence.
The embedding and the determining of a prediction are
performed by a pretrained language model. The term impor-
tance is output as the representation of the input sequence
over the vocabulary in the ranker of the neural information
retrieval model.

[0012] Other embodiments provide, among other things, a
neural model implemented by a computer having a proces-
sor and memory for providing a representation of an input
sequence over a vocabulary in a ranker of a neural infor-
mation retrieval model. The input sequence may be, for
instance, a query or a document sequence. A pretrained
language model layer is configured to embed each token in
a tokenized input sequence based on the vocabulary and
contextual features to provide context embedded tokens, and
to predict an importance (e.g., weight) with respect to each
token of the embedded input sequence over the vocabulary
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by transforming the context embedded tokens using one or
more linear layers. The tokenized input sequence is token-
ized using the vocabulary. A representation layer is config-
ured to receive the predicted importance with respect to each
token over the vocabulary and obtain a representation of
importance (e.g., weight) of the input sequence over the
vocabulary. The representation layer can comprise a concave
activation layer configured to perform a concave activation
of the predicted importance over the embedded input
sequence. The representation layer may output the predicted
term importance of the input sequence over the vocabulary
in the ranker of the neural information retrieval model. The
predicted term importance of the input sequence can be used
to retrieve a document.

[0013] Other embodiments provide, among other things, a
computer implemented method for training of a neural
model for providing a representation of an input sequence
over a vocabulary in a ranker of an information retrieval
model. The training may be part of an end-to-end training of
the ranker or the IR model. The neural model is provided
with: 1) a tokenizer layer configured to tokenize the input
sequence using the vocabulary; ii) an input embedding layer
configured to embed each token of the tokenized input
sequence based at least on the vocabulary; iii) a predictor
layer configured to predict an importance (e.g., weight) for
each token of the input sequence over the vocabulary; and
iv) a representation layer configured to receive the predicted
importance with respect to each token over the vocabulary
and obtain predicted importance (e.g., weight) of the input
sequence over the vocabulary. The input embedding layer
and the predictor layer may be embodied in a pretrained
language model. The representation layer may comprise a
concave activation layer configured to perform a concave
activation of the predicted importance over the input
sequence. In an example training method, parameters of the
neural model are initialized, and the neural model is trained
using a dataset comprising a plurality of documents. Train-
ing the neural model jointly optimizes a loss comprising a
ranking loss and at least one sparse regularization loss. The
ranking loss and/or the at least one sparse regularization loss
can be weighted by a weighting parameter.

[0014] According to a complementary aspect, the present
disclosure provides a computer program product, compris-
ing code instructions to execute a method according to the
previously described aspects; and a computer-readable
medium, on which is stored a computer program product
comprising code instructions for executing a method accord-
ing to the previously described embodiments and aspects.
The present disclosure further provides a processor config-
ured using code instructions for executing a method accord-
ing to the previously described embodiments and aspects.

[0015] Other features and advantages of the invention will
be apparent from the following specification taken in con-
junction with the following drawings.

DESCRIPTION OF THE DRAWINGS

[0016] The accompanying drawings are incorporated into
the specification for the purpose of explaining the principles
of'the embodiments. The drawings are not to be construed as
limiting the invention to only the illustrated and described
embodiments or to how they can be made and used. Further
features and advantages will become apparent from the
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following and, more particularly, from the description of the
embodiments as illustrated in the accompanying drawings,
wherein:

[0017] FIG. 1 shows an example processor-based system
for information retrieval (IR) of documents.

[0018] FIG. 2 shows an example processor-based method
for providing a representation of an input sequence over a
vocabulary.

[0019] FIG. 3 shows an example neural ranker model for
performing the method of FIG. 2.

[0020] FIG. 4 shows an example method for comparing
documents.
[0021] FIG. 5 shows an example training method for a

neural ranking model.

[0022] FIG. 6 illustrates a tradeoff between effectiveness
(MRR@10) and efficiency (FLOPS), when regularization
weights for queries and documents are varied.

[0023] FIG. 7 shows example document and expansion
terms.
[0024] FIG. 8 shows example performance versus FLOPS

for various example models.

[0025] FIG. 9 shows an example architecture in which
example methods can be implemented.

[0026] In the drawings, reference numbers may be reused
to identify similar and/or identical elements.

DETAILED DESCRIPTION

[0027] It is desirable to provide neural ranker models for
ranking (e.g., document ranking) in information retrieval
(IR) that can generate (vector) representations sparse enough
to allow the use of inverted indexes for retrieval (which is
faster and more reliable than methods such as approximate
nearest neighbor (ANN) methods, and enables exact match-
ing), while performing comparably to neural IR representa-
tions using dense embedding (e.g., in terms of performance
metrics such as MRR (Mean Reciprocal Rank) and NDCG
(Normalized Discounted Cumulative Gain)).

[0028] Example neural ranker models can combine rich
term embeddings such as can be provided by trained lan-
guage models (LMs) such as Bidirectional Encoder Repre-
sentations from Transformers (BERT)-based LMs, with
sparsity that allows efficient matching algorithms for IR
based on inverted indexes. BERT-based language models are
commonly used in natural language processing (NLP) tasks,
and are exploited in example embodiments herein for rank-
ing.

[0029] Example systems and methods can provide sparse
representations (sparse vector representations or sparse lexi-
cal expansions) of an input sequence (e.g., a document or
query) in the context of IR by predicting a term importance
of the input sequence over a vocabulary. Such systems and
methods can provide, among other things, expansion-aware
representations of documents and queries.

[0030] An example pretrained LM, that is trained using a
self-supervised pretraining objective, such as via masked
language modeling (MLM) methods, can be used to deter-
mine a prediction of an importance (or weight) for an input
sequence over the vocabulary (term importance) with
respect to tokens of the input sequence. A final representa-
tion providing the predicted importance of the input
sequence over the vocabulary can be obtained by performing
an activation that includes a concave function to prevent
some terms from dominating. Example concave activation
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functions can provide a log-saturation effect, while others
can use functions such as radical functions (e.g., sqrt (1+x)).
[0031] Example neural ranker models can be further
trained based in part on sparsity regularization to ensure
sparsity of the produced representations and improve both
the efficiency (computational speed) and the effectiveness
(quality of lexical expansions) of first-stage ranking models.
A trade-off between efficiency and effectiveness can be
tailored using weights.

[0032] The concave activation and/or sparsity regulariza-
tion can provide improvements over models such as those
based on BERT architectures that require learned binary
gating. Among other features, sparsity regularization may
allow for end-to-end, single-stage training, without relying
on handcrafted sparsification strategies such as BOW mask-
ing.

[0033] Neural ranking models may also be trained using
in-batch negative sampling, in which some negative docu-
ments are included from other queries to provide a ranking
loss that can be combined with sparsity regularization in an
overall loss. By contrast, ranking models such as SparTerm
(e.g., as disclosed in Bai et al., 2020. SparTerm: Learning
Term based Sparse Representation for Fast Text Retrieval.
arXiv:2010.00768 [cs.IR]), are trained using only hard nega-
tives, e.g., generated by BM25. Training using in-batch
negative sampling can further improve the performance of
example models.

[0034] Experiments disclosed herein demonstrate that
example neural ranking models, e.g., used for a first-stage
ranker for information retrieval, can outperform other sparse
retrieval methods on test datasets, yet can provide compa-
rable results to state-of-the-art dense retrieval methods.
Unlike dense retrieval approaches, example neural ranking
models can learn sparse lexical expansions and thus can
benefit from inverted index retrieval methods, avoiding the
need for methods such as approximate nearest neighbor
(ANN) search.

[0035] Example methods and systems herein can further
provide training for a neural ranker model based on explicit
sparsity regularization, which can be used in combination
with a concave activation function for term weights. This
can provide highly sparse representations and comparable
results to existing dense and sparse methods. Example
models can be implemented in a straightforward manner,
and may be trained end-to-end in a single stage. The
contribution of the sparsity regularization can be controlled
in example methods to influence the trade-off between
effectiveness and efficiency.

[0036] Referring now to the drawings, FIG. 1 shows an
example system 100 using a neural model for information
retrieval (IR) of documents, such as but not limited to a
search engine. A query 102 is input to a first-stage retriever
104. Example queries include but are not limited to search
requests or search terms for providing one or more docu-
ments (of any format), questions to be answered, items to be
identified, etc. The first-stage retriever or ranker 104 pro-
cesses the query 102 to provide a ranking of available
documents, and retrieves a first set 106 of top-ranked
documents. A second-stage or reranker 108 then reranks the
retrieved set 106 of top-ranked documents and outputs a
ranked set 110 of documents, which may be fewer in number
than the first set 106.

[0037] Example neural ranker models according to
embodiments herein may be used for providing rankings for
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the first-stage retriever or ranker 104, as shown in FIG. 1, in
combination with a second-stage reranker 108. Example
second-stage rerankers 108 include but are not limited to
rerankers implementing learning-to-rank methods such as
LambdaMart, RankNET, or GBDT on handcrafted features,
or rerankers implementing neural network models with word
embedding (e.g., word2vec). Neural network-based rerank-
ers can be representation based, such as DSSM, or interac-
tion based, such as DRMM, K-NRM, or DUET. In other
example embodiments, example neural ranker models
herein can alternatively or additionally provide rankings for
the second stage reranker 108. In other embodiments,
example neural ranker models can be used as a standalone
ranking and possibly retrieval stage.

[0038] Example neural ranker models, whether used in the
first-stage 104, the second stage 108, or as a standalone
model, may provide representations, e.g., vector represen-
tations, of an input sequence over a vocabulary. The vocabu-
lary may be predetermined. The input sequence can be
embodied in, for instance, a query sequence such as the
query 102, a document sequence to be ranked and/or
retrieved based on a query, or any other input sequence.
“Document” as used herein broadly refers to any sequence
of'tokens that can be represented in vector space and ranked
using example methods and/or can be retrieved. A query
broadly refers to any sequence of tokens that can be repre-
sented in vector space for use in ranking and retrieving one
or more documents.

[0039] FIG. 2 shows an example method 200 for provid-
ing a representation of an input sequence over a predeter-
mined vocabulary, a nonlimiting example being BERT
WordPiece vocabulary (| V]=30522), which representation
may be used for ranking and/or reranking in IR. FIG. 3
shows an example neural ranker model 300 that may be used
for performing the method 200. The neural ranker model
300 can be implemented by one or more computers having
at least one processor and one memory.

[0040] Example neural ranker models herein can infer
sparse representations for input sequences, e.g., queries or
documents, directly by providing supervised query and/or
document expansion. Example models can perform expan-
sion using a pretrained language model (LM) such as but not
limited to an LM trained using unsupervised methods such
as Masked Language Model (MLM) training methods. For
instance, a neural ranker model can perform expansion
based on the log its (i.e., unnormalized outputs) 302 of a
Masked Language Model (MLM)-trained LM 320. Regu-
larization may be used to train example retrievers to ensure
or encourage sparsity.

[0041] An example pretrained LM may be based on
BERT. BERT, e.g., as disclosed in Devlin et al, 2019, BERT:
Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding, CoRR abs/1810.04805, incorporated
herein by reference, is a family of transformer-based training
methods and associated models, which may be pre-trained
on two tasks: masked-token prediction, referred to as a
“masked language model” (MLM) task™; and next-sentence
prediction. These models are bidirectional in that each token
attends to both its left and right neighbors, not only to its
predecessors. Example neural ranker models herein can
exploit pretrained language model such as those provided by
BERT-based models to project token-level importance over
a vocabulary (such as over a BERT vocabulary space, or
other vocabulary space) for an input sequence, and then
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obtain predicted importance of the input sequence over the
vocabulary to provide a representation of the input
sequence.

[0042] The input sequence 301 received by the neural
ranker model 300 is tokenized at 202 by a tokenizer layer
304 using the predetermined vocabulary (in this example, a
BERT vocabulary) to provide a tokenized input sequence t,
... ty 306. The tokenized input sequence 306 may also
include one or more special tokens, such as but not limited
to <CLS> (a symbol added in front of an input sequence,
which may be used in some BERT methods for classifica-
tion) and/or <SEP> (used in some BERT methods for a
separator), as can be used in BERT embeddings.

[0043] Token-level importance is predicted at 206. Token-
level importance refers to an importance (or weight, or
representation) of each token in the vocabulary, with respect
to each token of the input sequence (e.g., a “local” impor-
tance). For example, each token of the tokenized input
sequence 306 may be embedded at 208 to provide a
sequence of context-embedded tokens h,; . . . h, 312. The
embedding of each token of the tokenized input sequence
306 may be based on, for instance, the vocabulary and the
token’s position within the input sequence. The context
embedded tokens h, . .. h, 312 may represent contextual
features of the tokens within the embedded input sequence.
An example context embedding 208 may use one or more
embedding layers embodied in transformer-based layers
such as BERT layers 308 of the pretrained LM 320.
[0044] Token-level importance of the input sequence is
predicted over the vocabulary (e.g., BERT vocabulary
space) at 210 from the context-embedded tokens 312. A
token-level importance distribution layer, e.g., embodied in
a head (log its) 302 of the pretrained LM 320 (e.g., trained
using MLLM methods) may be used to predict an importance
(or weight) of each token of the vocabulary with respect to
each token of the input sequence of tokens; that is, a (input
sequence) token-level or local representation 310 in the
vocabulary space. For instance, the MLM head 302 may
transform the context embedded tokens 312 using one or
more linear layers, each including at least one log it function,
to predict an importance (e.g., weight, or other representa-
tion) of each token in the vocabulary with respect to each
token of the embedded input sequence and provide the
token-level representation 310 in the vocabulary space.
[0045] For example, consider an input query or document
sequence after tokenization 202 (e.g., WordPiece tokeniza-
tion) t=(t,, . . . . ty), and its corresponding BERT embed-
dings (or BERT-like model embeddings) after embedding
208 (h,, h,, . . . hy). The importance w; of the token j
(vocabulary) for a token i (of the input sequence) can be
provided at step 210 by:

w=transform(h,)Eq+b, je {1, . . . LV]} %))

[0046] where E; denotes the BERT (or BERT-like model)
input embedding resulting from the tokenizer and the model
parameter for token j (i.e., a vector representing token j
without taking into account the context), b, is a token-level
bias, and transform(.) is a linear layer with Gaussian error
linear unit (GeLU) activation, e.g., as disclosed in Hen-
drycks and Gimpel, arXiv:1606.08415, 2016, and a normal-
ization layer LayerNorm. GeLU can be provided, for
instance, by x~ x0(x), or can be approximated in terms of
the tan h(-) function (as the variance of the Gaussian goes to
zero one arrives at a rectified linear unit (Rel.U), but for unit
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variance one gets GeLU). T can correspond to the transpose
operation in linear algebra, e.g., to indicate that in the end it
is a dot product, and may be included in the transform
function.

[0047] Equation (1) can be equivalent to the MLM pre-
diction. Thus, it can also be initialized, for instance, from a
pretrained MLLM model (or other pretrained LM).

[0048] Term importance of the input sequence 318 (e.g., a
global term importance for the input sequence) is predicted
at 220 as a representation of importance (e.g., weight) of the
input sequence over the vocabulary by performing an acti-
vation using a representation layer 322 that performs a
concave activation function over the embedded input
sequence. The predicted term importance of the input
sequence predicted at 220 may be independent of the length
of the input sequence. The concave activation function can
be, as nonlimiting examples, a logarithmic activation func-
tion or a radical function (e.g., a sqrt (1+x) function; a
mapping w—>(\/(T+ReLU(w))—1)* for an appropriate scaling
k, etc.).

[0049] For instance, the final representation of importance
of the input sequence 318 can be obtained by combining (or
maximizing, for example) importance predictors over the
input sequence tokens, and applying a concave function
such as a logarithmic function after applying an activation
function such as ReL.U to ensure the positivity of term
weights:

w; = maxlog(l + ReLU(w;;)) 2)
ict

[0050] The above example model provides a log-satura-
tion effect that prevents some terms from dominating and
(naturally) ensures sparsity in representations. Logarithmic
activation has been used, for instance, in computer vision,
e.g., as disclosed in Yang Liu et al., Natural-Logarithm-
Rectified Activation Function in Convolutional Neural Net-
works, arXiv, 2019, 1908.03682. While using a log-satura-
tion or other concave functions prevents some terms from
dominating, surprisingly the implied sparsity obtains
improved results and allows obtaining of sparse solutions
without regularization.

[0051] The final representation (i.e., the predicted term
importance of the input sequence), output at 212, may be
compared to representations from other sequences, includ-
ing queries or documents, or, since the representations are in
the vocabulary space, simply to tokenizations of sequences
(e.g.. a tokenization of a query over the vocabulary can
provide a representation). FIG. 4 shows an example com-
parison method 400. The representation 402 of a query 403,
e.g., generated by a ranker/tokenizer 404 such as provided
by the neural ranker model 300 or by a tokenizer, is
compared to representations of each of a plurality of can-
didate sequences 405, e.g., generated offline for a document
collection 406 by a neural ranker model (Ranker) 408 such
as the neural ranker model 300. The candidate sequences
405 may be respectively associated with candidate docu-
ments (or themselves are candidate documents) for infor-
mation retrieval. An example comparison may include, for
instance, taking a dot product between the representations.
This comparison may provide a ranking score. The plurality
of candidate sequences 405 can then be ranked based on the
ranking score, and a subset of the documents 406 (e.g., the
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highest ranked set, a sampled set based on the ranking, etc.)
can be retrieved. This retrieval can be performed during the
first (ranking) and/or the second stage (reranking) of an
information retrieval method.

[0052] An example training method for the neural ranker
model 300 will now be described. Generally, training begins
by initializing parameters of the model, e.g., weights and
biases, which are then iteratively adjusted after evaluating an
output result produced by the model for a given input against
the expected output. To train the neural ranker model 300,
parameters of the neural model can be initialized. Some
parameters may be pretrained, such as but not limited to
parameters of a pretrained LM such as an MLM. Initial
parameters may additionally or alternatively be, for
example, randomized, or initialized in any other suitable
manner. The neural ranker model 300 may be trained using
a dataset including a plurality of documents. The dataset
may be used in batches to train the neural ranker model 300.
The dataset may include a plurality of documents including
a plurality of queries. For each of the queries the dataset may
further include at least one positive document (a document
associated with the query) and at least one negative docu-
ment (a document not associated with the query). Negative
documents can include hard negative documents, which are
not associated with any of the queries in the dataset (or in the
respective batch), and/or negative documents that are not
associated with the particular query but are associated with
other queries in the dataset (or batch). Hard documents may
be generated, for instance, by sampling a model such as but
not limited to a ranking model.

[0053] FIG. 5 shows an example training method for a
neural ranking model 500, such as the neural ranker model
300 (shown in FIG. 3), employing an in-batch negatives
(IBN) sampling strategy. Let s(q,d) denote the ranking score
obtained from dot product between q and d representations
502 from Equation (2). Given a query q; in a batch, a positive
document d;*, a (hard) negative document d,” (e.g., coming
from sampling a ranking function, e.g., from BM25 sam-
pling), and a set of negative documents in the batch provided
by positive documents from other queries {d, "}, the rank-
ing loss can be interpreted as the maximization of the
probability of the document d;* being relevant among the
documents d,*, d,7, and {d,;};
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[0054] The example neural ranker model 500 can be
trained by minimizing the loss in Equation (3).

[0055] Additionally, the ranking loss may be supple-
mented to provide for sparsity regularization. Learning
sparse representations has been employed in methods such
as SNRM (e.g., Zamani et al., 2018, from Neural Re-
Ranking to Neural Ranking: Learning a Sparse Represen-
tation of Inverted Indexing, In Proceedings of the 27th ACM
International Conference on Information and Knowledge
Management (Torino, Italy) (CIKM ’18). Association for
Computing Machinery, New York, N.Y., USA, 497-506) via
~ | regularization. However, minimizing the = ; norm of
representations does not result in the most efficient index, as
nothing ensures that posting lists are evenly distributed. This
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is even truer for standard indexes due to the Zipfian nature
of the term frequency distribution.

[0056] To obtain a well-balanced index, Paria et al., 2020,
Minimizing FLOPs to Learn Efficient Sparse Representa-
tions, arXiv:2004.05665, discloses the FLOPS regularizer, a
smooth relaxation of the average number of floating-point
operations necessary to compute the score of a document,
and hence directly related to the retrieval time. It is defined
using a, as a continuous relaxation of the activation (i.e., the
term has a non-zero weight) probability p; for token j, and
estimated for documents d in a batch of size N by
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This provides the following regularization loss:
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[0057] This differs from the — | regularization used in
SNRM in that the a; are not squared: using = ,; ops thus
pushes down high average term weight values, giving rise to
a more balanced index.

[0058] Example models may combine one or more of the
above features to provide training, e.g., end-to-end training,
of sparse, expansion-aware representations of documents
and queries. For instance, example models can learn the
log-saturation model provided by Equation (2) by jointly
optimizing ranking and regularization losses:

L-L rank-1BNhg L reg Ay L re. gd “

[0059] In Equation (4), [,gg is a sparse regularization
(e.g.. ", Or P 4 ops)- Two distinct regularization weights
(A, and X for queries and documents, respectively, can be
provided in the example loss function, allowing additional
pressure to be put on the sparsity for queries, which is highly
useful for fast retrieval.

[0060] Neural ranker models may also employ pooling
methods to further enhance effectiveness and/or efficiency.
For instance, by straightforwardly modifying the pooling
mechanism disclosed above, example models may increase
effectiveness by a significant margin.

[0061] An example max pooling method may change the
sum in Equation (2) above by a max pooling operation:

w; = maxlog(l + ReLU(w;;)) (5)
ict

[0062] This modification can provide improved perfor-
mance, as demonstrated in experiments.

[0063] Example models can also be extended without
query expansion, providing a document-only method. Such
models can be inherently more efficient, as everything can
then be pre-computed and indexed offline, while providing
results that remain competitive. Such methods can be pro-
vided in combination with the max pooling operation or
separately. In such methods, there are no query expansions
nor term weighting, and thus the ranking score can be
provided simply by comparing a tokenization of the query in
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the vocabulary to (e.g., pre-computed) representations of
documents that can be generated by the neural ranker model:

S(qld)ZEquWjd (6)

[0064] Another example modification may incorporate
distillation into training methods. Distillation can be pro-
vided in combination with any of the above example models
or training methods or provided separately. An example
distillation may be based on methods disclosed in Hofstatter
et al., Improving Efficient Neural Ranking Models with
Cross-Architecture Knowledge Distillation, arXiv:2010.
02666, 2020. Distillation techniques can be used to further
boost example model performance, as demonstrated by
experiments showing near state-of-the-art performance on
MS MARCO passage ranking tasks as well as the BEIR
zero-shot benchmark.

[0065] Example distillation training can include at least
two steps. In a first step, both a first stage retriever, e.g., as
disclosed herein, and a reranker, such as those disclosed
herein (as a nonlimiting example, HuggingFace, as provided
by https://huggingface.co/cross-encoder/ms-marco-
Minil.M-L.-12-v2) are trained using triplets (e.g., a query q,
a relevant passage p*, and a non-relevant passage p), e.g.,
as disclosed in Hofstatter et al., 2020, Improving Efficient
Neural Ranking Models with Cross-Architecture Knowl-
edge Distillation. arXiv:2010.02666. In a second step, trip-
lets are generated with harder negatives using an example
model trained with distillation, and the reranker is used to
generate the desired scores.

[0066] A model, an example of which is referred to in
experiments herein as SPLADE,, ., may then be trained
from scratch using these triplets and scores. The result of this
second step provides a distilled model, an example of which
is referred to in experiments herein as DistilSPLADE,, .

Experiments

[0067] In a first set of experiments, example models were
trained and evaluated on the MS MARCO passage ranking
dataset (https://github.com/microsoft/ MSMARCO-Passage-
Ranking) in the full ranking setting. This dataset contains
approximately 8.8M passages, and hundreds of thousands of
training queries with shallow annotation 1.1 relevant pas-
sages per query on average). The development set contained
6980 queries with similar labels, while the TREC DL 2019
evaluation set provides fine-grained annotations from
human assessors for a set of 43 queries.

[0068] Training, indexing, and retrieval: The models were
initialized with the BERT-based checkpoint. Models were
trained with the ADAM optimizer, using a learning rate of
2¢° with linear scheduling and a warmup of 6000 steps, and
a batch size of 124. The best checkpoint was kept using
MRR@10 on a validation set of 500 queries, after training
for 150 k iterations. Though experiments were validated on
a re-ranking task, other validation may be used in example
methods. A maximum length of 256 was considered for
input sequences.

[0069] To mitigate the contribution of the regularizer at
the early stages of training, the method disclosed in Paria et
al., 2020, was followed, using a scheduler for A, quadrati-
cally increasing 2 L at each training iteration, until a given
step (in experiments, 50 k), from which it remained constant.
Typical values for 2 L fall between le~* and 1e™*. For storing
the index, a custom implementation was used based on
Python arrays. Numba was relied on for parallelizing
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retrieval. Models were trained using PyTorch and Hugging-
Face transformers, using 4 Tesla V100 GPUs with 32 GB
memory.

[0070] Evaluation: Recall@1000 was evaluated for both
datasets, as well as the official metrics MRR@10 and
NDCG@10 for MS MARCO dev set and TREC DL 2019
respectively. Since the focus of the evaluation was on the
first retrieval step, re-rankers based on BERT were not
considered, and example methods were compared to first
stage rankers only. Example methods were compared to the
following sparse approaches: 1) BM25; 2) DeepCT; 3)
doc2query-T5 (Nogueira and Lin, 2019. From doc2query to
docTTTTTquery); and 4) SparTerm, as well as known dense
approaches ANCE (Xiong et al., 2020, Approximate Nearest
Neighbor Negative Contrastive Learning for Dense Text
Retrieval, arXiv:2007.00808 [cs.IR]) and TCT-ColBERT
(Lin et al., 2020, Distilling Dense Representations for Rank-
ing using Tightly-Coupled Teachers. arXiv:2010.11386 [cs.
IR]). Results were provided from the original disclosures for
each approach. A pure lexical SparTerm trained with an
example ranking pipeline (ST lexical-only) was included. To
illustrate benefits of log-saturation, results were added for
models trained using binary gating (w=g,xZ,, ReLU(w,),
where g; is a binary mask) instead of using Equation (2)
above (ST exp-+— | and ST exp-— ; ops) For sparse models,
an estimate was indicated of the average number of floating-
point operations between a query and a document in Table
1, when available, which was defined as the expectation E_ ,
[Zer pj(q)pj(“)] where p; is the activation probability for
token j in a document d or a query q. It was empirically
estimated from a set of approximately 100 k development
queries, on the MS MARCO collection.

[0071] Results are shown in Table 1, below. Overall, it was
observed that example models outperformed the other sparse
retrieval methods by a large margin (except for recall@1000
on TREC DL), and that the results were competitive with
current dense retrieval methods.

[0072] For instance, example methods for ST lexical-only
outperformed the results of DeepCT as well as previously-
reported results for SparTerm—including the model using
expansion. Because of the additional sparse expansion
mechanism, results could be obtained that were comparable
to current state-of-the-art dense approaches on MS MARCO
dev set (e.g., Recall@1000 close to 0.96 for ST exp-+ ),
but with a much larger average number of FLOPS.

[0073] By adding a log-saturation effect to the expansion
model, example methods greatly increased sparsity, reduc-
ing the FLOPS to similar levels than BOW approaches, at no
cost to performance when compared to the best first-stage
rankers. In addition, an advantage was observed for the
FLOPS regularization over = | in order to decrease the
computing cost. In contrast to SparTerm, example methods
were trained end-to-end in a single step. Example methods
were also more straightforward compared to dense baselines
such as ANCE, and they avoid resorting to approximate
nearest neighbors search.
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TABLE 1

Evaluation on MS MARCO passage retrieval
(dev set) and TREC DL 2019

MS MARCO dev TREC DL 2019

model MRR@10 R@1000 NDCG@L0 R@1000
Dense retrieval
Siamese (ours) 0.312 0.941 0.637 0.711
ANCE [30] 0.330 0.959 0.648 —
TCT-CoIBERT [17] 0.359 0.970 0.719 0.760
TAS-B [11] 0.347 0.978 0.717 0.843
RocketQA [25] 0.370 0.979 — —
Sparse retrieval
BM25 0.184 0.853 0.506 0.745
DeepCT [4] 0.243 0913 0.551 0.756
doc2query-T5 [21] 0.277 0.947 0.642 0.827
COIL-tok [9] 0.341 0.949 0.660 —
Deeplmpact [19] 0.326 0.948 0.695 —
SPLADE (8] 0.322 0.955 0.665 0.813
Our methods
SPLADE,, . 0.340 0.965 0.684 0.851
SPLADE-doc 0.322 0.946 0.667 0.747
DistilSPLADE,,,,. 0.368 0.979 0.729 0.865
[0074] FIG. 6 illustrates a tradeoff between effectiveness

(MRR@10) and efficiency (FLOPS), when A, and A, are
varied (varying both implies that plots are not smooth). It
was observed that ST exp-- ;,ps falls far below BOW
models and example methods in terms of efficiency. In the
meantime, example methods (SPLADE exp-— |, SPLADE
eXp-— rrops) reached efficiency levels equivalent to sparse
BOW models, while outperforming doc2query-T5. Strongly
regularized models had competitive performance (e.g.,
FLOPS=0.05, MRR@10=0.0296). Further, the regulariza-
tion effect brought by = .; ,5s compared to = | was appar-
ent: for the same level of efficiency, performance of the latter
was always lower.

[0075] The experiments demonstrated that the expansion
provides improvements with respect to the purely lexical
approach by increasing recall. Additionally, representations
obtained from expansion-regularized models were sparser:
the models learned how to balance expansion and compres-
sion, by both turning off irrelevant dimensions and activat-
ing useful ones. On a set of 10 k documents, the SPLADE-
= o ops results from Table 1 dropped on average 20 terms
per document, while adding 32 expansion terms. For one of
the most efficient models (FLOPS=0.05), 34 terms were
dropped on average, with only 5 new expansion terms. In
this case, representations were extremely sparse: documents
and queries contained on average 18 and 6 non-zero values
respectively, and less than 1.4 GB was required to store the
index on disk.

[0076] FIG. 7 shows example document and expansion
terms. The figure shows an example operation where the
example neural model performed term re-weighting by
emphasizing important terms and discarding terms without
information content (e.g., is). In FIG. 7 the weight associated
with the term is shown between parenthesis (omitted for the
second occurrence of the term in the document). Strike-
throughs are shown for zeros. Expansion provides enrich-
ment of the example document, either by implicitly adding
stemming effects (e.g., legs—leg) or by adding relevant
topic words (e.g., treatment).
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[0077] Additional experiments were performed using the
example max pooling, document encoding, and distillation
features described above, and using the MS MARCO data-
set. Table 2 below shows example results for MS-MARCO
and TREC-2019 as in Table 1 above, as further compared to
results of further experiments using modified models. FIG.
8, similar to FIG. 6, shows example performance versus
FLOPS for various example models, including example
modified models, trained with different regularization
strength.

TABLE 2

Evaluation on MS MARCO passage retrieval (dev set) and
TREC DL 2019 (with comparison to additional models)

MS MARCO dev TREC DL 2019
model MRR@10 R@1000 NDCG@L0 R@1000
Dense retrieval
Siamese (ours) 0.312 0.941 0.637 0.711
ANCE [30] 0.330 0.959 0.648 —
TCT-CoIBERT [17] 0.359 0.970 0.719 0.760
TAS-B [11] 0.347 0.978 0.717 0.843
RocketQA [25] 0.370 0.979 — —
Sparse retrieval
BM25 0.184 0.853 0.506 0.745
DeepCT [4] 0.243 0.913 0.551 0.756
doc2query-T5 [21] 0.277 0.947 0.642 0.827
COIL-tok [9] 0.341 0.949 0.660 —
Deeplmpact [19] 0.326 0.948 0.695 —
SPLADE [8] 0.322 0.955 0.665 0.813
Our methods
SPLADE,,,, 0.340 0.965 0.684 0.851
SPLADE-doc 0.322 0.946 0.667 0.747
DistilSPLADE,,, 0.368 0.979 0.729 0.865
[0078] The zero-shot performance of example models was

verified using a subset of datasets from the BEIR benchmark
(e.g., as disclosed in Thakur et al., BEIR: A Heterogenous
Benchmark for Zero-shot Evaluation of Information
Retrieval Models, CoRR abs/2104.08663 (2021), arXiv:
2104.08663), which encompasses various IR datasets for
zero shot comparison. A subset was used due to the fact that
some of the datasets were not readily available.

[0079] Comparison was made to the best performing mod-
els from Thakur et al., 2021 (ColBERT (Khattab and Zah-
aria, 2020, ColBERT: Efficient and Effective Passage Search
via Contextualized Late Interaction over BERT, In Proceed-
ings of the 43" International ACM SIGIR Conference on
Research and Development in Information Retrieval (Vir-
tual Event, China) (SIGIR °20). Association for Computing
Machinery, New York, N.Y., USA, 39-48)) and the two best
performing from the rolling benchmark (tuned BM25 and
TAS-B). Table 3, below, shows additional results from
example models against several baselines on the BEIR
benchmark. Generally, it was observed that example models
outperformed the other sparse retrieval methods by a large
margin (except for recall@1000 on TREC DL), and that
results were competitive with state-of-the-art dense retrieval
methods.
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TABLE 3

NDCG@]10 results on BEIR.

Baselines Splade
Corpus Colbert BM25 TAS-B Sum Max  Distil
MSMARCO 0.425 0.228 0408 0387 0402 0433
arguana 0.233 0315 0427 0447 0439 0479
climate-fever 0.184 0213 0.228 0162 0.199 0.235
DBPedia 0392 0273 0384 0343 0366 0435
fever 0.771 0753  0.700  0.728  0.730 0.786
figa 0317 0236 0300 0258 0287 0336
hotpotqa 0.593 0.603 0584  0.635 0.636 0.684
nfcorpus 0.305 0325 0319 0311 0313 0334
nq 0.524 0329 0463 0438 0469 0521
quora 0.854 0789  0.835 0.829  0.835 0.838
scidocs 0.145 0.158  0.149  0.141 0.145  0.158
scifact 0.671 0.665  0.643 0.626  0.628  0.693
tree-covid 0.677  0.656  0.481 0.655  0.673 0.710
webis-touche2020  0.275 0.614  0.173 0.289 0316 0364
Average all 0.455 0.440 0435 0446 0460 0500
Average zero shot  0.457 0.456 0.437 0451 0.464  0.506
Best on dataset 2 2 0 0 0 11
TABLE 4
Recall@100 results on BEIR
Baselines (from BEIR) Splade

Corpus Colbert BM25 TAS-B Sum Max  Distil
MSMARCO 86.5%  65.8% 88.4% 84.9% 87.1% 89.8%
arguana 46.4%  94.2%  94.2% 945% 94.6% 97.2%
climate-fever 64.5% 43.6% 53.4% 36.8% 45.3% 524%
DBPedia 46.1%  39.8% 49.9% 453% 49.5% 57.5%
fever 93.4%  93.1% 93.7% 93.3% 93.5% 95.1%
figa 60.3% 54.0% 59.3% 53.8% 57.2% 62.1%
hotpotqa 74.8%  74.0% 72.8% 76.8%  78.1% 82.03%
nfcorpus 254%  25.0% 29.4% 25.6% 26.5% 27.7%
nq 91.2%  76.0% 90.3% 84.4% 87.5% 93.1%
quora 98.9% 97.3% 98.6% 98.4% 98.4% 98.7%
scidocs 344%  35.6% 33.5% 32.8% 34.9% 364%
scifact 87.8% 90.8% 89.1% 88.4% 89.8% 92.0%
tree-covid 46.4%  49.8%  38.7% 48.6% 50.2% 55.0%
webis-touche2020  30.9%  45.8% 26.4% 31.3% 33.1% 35.4%
Average all 634% 63.2% 65.6% 63.9% 66.1% 69.6%
Average zero shot  61.6%  63.0% 63.8% 62.3% 64.5% 68.1%
Best on dataset 2 1 1 0 0 10
[0080] Impact of Max Pooling: On MS MARCO and

TREC, models including max pooling (SPLADE,, )
brought almost 2 points in MRR and NDCG compared to
example models without max pooling (SPLADE). Such
models are competitive with models such as COIL and
Deeplmpact. FIG. 8 shows performance versus FLOPS for
experimental models trained with different regularization
strength 2L, on the MS MARCO dataset. FIG. 8 shows that
SPLADE, ,. performed better than SPLADE and that the
efficiency versus sparsity trade-off can also be adjusted.
Also, SPLADE . demonstrated improved performance on
the BEIR benchmark (Table 3—NDCG@]10 results; Table
4—Recall@100 results).

[0081] The example document encoder with max pooling
(SPLADE,,,,) was able to reach the same performance as
the above model (SPLADE), outperforming doc2query-T5
on MS MARCO. As this model had no query encoder, it had
better latency. Further, this example document encoder is
straightforward to train and to apply to a new document
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collection: a single forward is required, as opposed to
multiple inference with beam search for methods such as
doc2query-TS5.

[0082] Impact of Distillation: Adding distillation signifi-
cantly improved the performance of the example SPLADE
model, as shown by example model in Table 2 (DistilSP-
LADE,, ). FIG. 8 shows effectiveness/efficiency trade-off
analysis. Generally, example distilled models provided fur-
ther improvements for higher values of flops (0.368 MRR
with 4 flops), but were still very efficient in low regime (0.35
MRR with 0.3 flops). Further, the example distilled model
(DistilSPLADE,, ,,) was able to outperform all other experi-
mental methods in most datasets. Without wishing to be
bound by theory, it is believed that advantages of example
models are due at least in part to the fact that embeddings
provided by example models transfer better because they use
tokens that have intrinsic meaning compared to dense vec-
tors.

[0083]

[0084] Example systems, methods, and embodiments may
be implemented within a network architecture 900 such as
illustrated in FIG. 9, which comprises a server 902 and one
or more client devices 904 that communicate over a network
906 which may be wireless and/or wired, such as the
Internet, for data exchange. The server 902 and the client
devices 904a, 9045 can each include a processor, e.g.,
processor 908 and a memory, e.g., memory 910 (shown by
example in server 902), such as but not limited to random-
access memory (RAM), read-only memory (ROM), hard
disks, solid state disks, or other non-volatile storage media.
Memory 910 may also be provided in whole or in part by
external storage in communication with the processor 908.

[0085] The system 100 (shown in FIG. 1) and/or the neural
ranker model 300, 408, 500 (shown in FIGS. 3, 4, and 5,
respectively) for instance, may be embodied in the server
902 and/or client devices 904. It will be appreciated that the
processor 908 can include either a single processor or
multiple processors operating in series or in parallel, and that
the memory 910 can include one or more memories, includ-
ing combinations of memory types and/or locations. Server
902 may also include, but are not limited to, dedicated
servers, cloud-based servers, or a combination (e.g., shared).
Storage, e.g., a database, may be embodied in suitable
storage in the server 902, client device 904, a connected
remote storage 912 (shown in connection with the server
902, but can likewise be connected to client devices), or any
combination.

[0086] Client devices 904 may be any processor-based
device, terminal, etc., and/or may be embodied in a client
application executable by a processor-based device, etc.
Client devices may be disposed within the server 902 and/or
external to the server (local or remote, or any combination)
and in communication with the server. Example client
devices 904 include, but are not limited to, autonomous
computers 904a, mobile communication devices (e.g.,
smartphones, tablet computers, etc.) 9045, robots 904c,
autonomous vehicles 9044, wearable devices, virtual reality,
augmented reality, or mixed reality devices (not shown), or
others. Client devices 904 may be configured for sending
data to and/or receiving data from the server 902, and may
include, but need not include, one or more output devices,
such as but not limited to displays, printers, etc. for display-

Network Architecture
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ing or printing results of certain methods that are provided
for display by the server. Client devices may include com-
binations of client devices.

[0087] In an example training method the server 902 or
client devices 904 may receive a dataset from any suitable
source, e.g., from memory 910 (as nonlimiting examples,
internal storage, an internal database, etc.), from external
(e.g., remote) storage 912 connected locally or over the
network 906. The example training method can generate a
trained model that can be likewise stored in the server (e.g.,
memory 910), client devices 904, external storage 912, or
combination. In some example embodiments provided
herein, training and/or inference may be performed offline or
online (e.g., at run time), in any combination. Results can be
output (e.g., displayed, transmitted, provided for display,
printed, etc.) and/or stored for retrieving and providing on
request.

[0088] In an example document processing method the
server 902 or client devices 904 may receive one or more
documents from any suitable source, e.g., by local or remote
input from a suitable interface, or from another of the server
or client devices connected locally or over the network 906.
Trained models such as the example neural ranking model
can be likewise stored in the server (e.g., memory 910),
client devices 904, external storage 912, or combination. In
some example embodiments provided herein, training and/
or inference may be performed offline or online (e.g., at run
time), in any combination. Results can be output (e.g.,
displayed, transmitted, provided for display, printed, etc.)
and/or stored for retrieving and providing on request.
[0089] In an example retrieval method the server 902 or
client devices 904 may receive a query from any suitable
source, e.g., by local or remote input from a suitable
interface, or from another of the server or client devices
connected locally or over the network 906 and process the
query using example neural models (or by a more straight-
forward tokenization, in some example methods). Trained
models such as the example neural can be likewise stored in
the server (e.g., memory 910), client devices 904, external
storage 912, or combination. Results can be output (e.g.,
displayed, transmitted, provided for display, printed, etc.)
and/or stored for retrieving and providing on request.
[0090] Generally, embodiments can be implemented as
computer program products with a program code or com-
puter-executable instructions, the program code or com-
puter-executable instructions being operative for performing
one of the methods when the computer program product
runs on a computer. The program code or the computer-
executable instructions may, for example, be stored on a
computer-readable storage medium.

[0091] In an embodiment, a storage medium (or a data
carrier, or a computer-readable medium) comprises, stored
thereon, the computer program or the computer-executable
instructions for performing one of the methods described
herein when it is performed by a processor.

[0092] Embodiments described herein may be imple-
mented in hardware or in software. The implementation can
be performed using a non-transitory storage medium such as
a computer-readable storage medium, for example a floppy
disc, a DVD, a Blu-Ray, a CD, a ROM, a PROM, and
EPROM, an EEPROM or a FLASH memory. Such com-
puter-readable media can be any available media that can be
accessed by a general-purpose or special-purpose computer
system.
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[0093]

[0094] The foregoing description is merely illustrative in
nature and is in no way intended to limit the disclosure, its
application, or uses. The broad teachings of the disclosure
may be implemented in a variety of forms. Therefore, while
this disclosure includes particular examples, the true scope
of the disclosure should not be so limited since other
modifications will become apparent upon a study of the
drawings, the specification, and the following claims. It
should be understood that one or more steps within a method
may be executed in different order (or concurrently) without
altering the principles of the present disclosure. Further,
although each of the embodiments is described above as
having certain features, any one or more of those features
described with respect to any embodiment of the disclosure
may be implemented in and/or combined with features of
any of the other embodiments, even if that combination is
not explicitly described. In other words, the described
embodiments are not mutually exclusive, and permutations
of one or more embodiments with one another remain within
the scope of this disclosure. All documents cited herein are
hereby incorporated by reference in their entirety, without an
admission that any of these documents constitute prior art.

[0095] Each module may include one or more interface
circuits. In some examples, the interface circuits may
include wired or wireless interfaces that are connected to a
local area network (LAN), the Internet, a wide area network
(WAN), or combinations thereof. The functionality of any
given module of the present disclosure may be distributed
among multiple modules that are connected via interface
circuits. For example, multiple modules may allow load
balancing. In a further example, a server (also known as
remote, or cloud) module may accomplish some function-
ality on behalf of a client module. Each module may be
implemented using code. The term code, as used above, may
include software, firmware, and/or microcode, and may refer
to programs, routines, functions, classes, data structures,
and/or objects.

[0096] The term memory circuit is a subset of the term
computer-readable medium. The term computer-readable
medium, as used herein, does not encompass transitory
electrical or electromagnetic signals propagating through a
medium (such as on a carrier wave); the term computer-
readable medium may therefore be considered tangible and
non-transitory. Non-limiting examples of a non-transitory,
tangible computer-readable medium are nonvolatile
memory circuits (such as a flash memory circuit, an erasable
programmable read-only memory circuit, or a mask read-
only memory circuit), volatile memory circuits (such as a
static random access memory circuit or a dynamic random
access memory circuit), magnetic storage media (such as an
analog or digital magnetic tape or a hard disk drive), and
optical storage media (such as a CD, a DVD, or a Blu-ray
Disc).

[0097] The systems and methods described in this appli-
cation may be partially or fully implemented by a special
purpose computer created by configuring a general purpose
computer to execute one or more particular functions
embodied in computer programs. The functional blocks,
flowchart components, and other elements described above
serve as software specifications, which may be translated
into the computer programs by the routine work of a skilled
technician or programmer.

General
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[0098] The computer programs include processor-execut-
able instructions that are stored on at least one non-transi-
tory, tangible computer-readable medium. The computer
programs may also include or rely on stored data. The
computer programs may encompass a basic input/output
system (BIOS) that interacts with hardware of the special
purpose computer, device drivers that interact with particu-
lar devices of the special purpose computer, one or more
operating systems, user applications, background services,
background applications, etc.

[0099] It will be appreciated that variations of the above-
disclosed embodiments and other features and functions, or
alternatives thereof, may be desirably combined into many
other different systems or applications. Also, various pres-
ently unforeseen or unanticipated alternatives, modifica-
tions, variations, or improvements therein may be subse-
quently made by those skilled in the art which are also
intended to be encompassed by the description above and
the following claims.

1. A method implemented by a computer having a pro-
cessor and memory for providing a representation of an
input sequence over a vocabulary in a ranker of a neural
information retrieval model, the method comprising:

embedding each token of a tokenized input sequence

based at least on the vocabulary to provide an embed-
ded input sequence, the tokenized input sequence being
tokenized using the vocabulary;

determining a prediction of an importance of each token

over the vocabulary with respect to each token of the
embedded input sequence;

obtaining a predicted term importance of the input

sequence as a representation of the input sequence over
the vocabulary by performing an activation over the
embedded input sequence; and

outputting the predicted term importance of the input

sequence as the representation of the input sequence
over the vocabulary in the ranker of the neural infor-
mation retrieval model;

wherein said embedding and said determining a predic-

tion are performed by a pretrained language model.

2. The method of claim 1, wherein the activation com-
prises a concave activation function.

3. The method of claim 2, wherein the concave activation
function comprises a logarithmic activation function or a
radical function.

4. The method of claim 2, wherein the concave activation
function comprises a logarithmic activation function,
wherein said logarithmic activation comprises:

for each token in the vocabulary, determining a maximum

of a log-saturation of the determined importance of the
token in the vocabulary over the embedded input
sequence, wherein the log-saturation prevents some
terms in the vocabulary from dominating and ensures
sparsity in the representation.

5. The method of claim 1, wherein the concave activation
function comprises a logarithmic activation function,
wherein said logarithmic activation comprises:

for each token in the vocabulary, combining a log-satu-

ration of the determined importance of the token in the
vocabulary over the embedded input sequence, wherein
the log-saturation prevents some terms in the vocabu-
lary from dominating and ensures sparsity in the rep-
resentation.
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6. The method of claim 1, further comprising:
tokenizing a received query using the vocabulary;
determining a ranking score for each of a plurality of
candidate sequences, the candidate sequences being
respectively associated with candidate documents,
wherein said determining a ranking score comprises:
determining the output predicted term importance for
the candidate sequence for each vocabulary token in
the tokenized query; and
combining the determined output predicted term
importances;

ranking the plurality of candidate sequences based on said

determined ranking score; and

retrieving a subset of the candidate documents having a

highest ranking.

7. The method of claim 1, wherein the ranker is in a first
stage of the information retrieval model, the information
retrieval model further including a second stage that is a
re-ranker stage.

8. The method of claim 1, further comprising:

comparing the output predicted term importance for the
input sequence to a previously determined predicted
term importance for each of a plurality of candidate
sequences, the candidate sequences being respectively
associated with candidate documents;

ranking the plurality of candidate sequences based on said

comparing;

retrieving a subset of the candidate documents having a

highest ranking.

9. The method of claim 8, wherein said comparing com-
prises calculating a dot product between the output predicted
term importance of the input sequence and the predicted
term importance for each of the plurality of candidate
sequences.

10. The method of claim 1, wherein said embedding each
token of the tokenized input sequence is based at least on the
vocabulary and the token’s position within the input
sequence to provide context embedded tokens.

11. The method of claim 10, wherein said determining a
prediction comprises:

transforming the context embedded tokens using at least

one log it function to predict an importance of each
token in the vocabulary with respect to each token of
the embedded input sequence.

12. The method of claim 11, wherein the at least one log
it function is provided by one or more linear layers, each
including an activation and a normalization layer;

the one or more linear layers combining the transforma-

tion with the respective vocabulary token of the embed-
ded input sequence and a token-level bias.

13. The method of claim 1, wherein the pretrained lan-
guage model comprises a transformer architecture.

14. The method of claim 13, wherein the language model
is pretrained using a masked language modeling method.

15. The method of claim 1, wherein said performing a
concave activation function comprises, for each token in the
embedded input sequence, applying an activation function to
the determined importance of the token in the vocabulary
over the embedded input sequence to ensure the positivity of
the determined term weights, and performing a concave
function on the result of the activation function.
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16. A neural model implemented by a computer having a
processor and memory for providing a representation of an
input sequence over a vocabulary in a ranker of a neural
information retrieval model, the model comprising:

a pretrained language model layer configured to embed
each token in a tokenized input sequence with contex-
tual features within the embedded input sequence to
provide context embedded tokens and to predict an
importance with respect to each token of the embedded
input sequence over the vocabulary by transforming the
context embedded tokens using one or more linear
layers, wherein the tokenized input sequence is token-
ized using the vocabulary; and

a representation layer configured to receive the predicted
importance with respect to each token over the vocabu-
lary and obtain a predicted term importance of the input
sequence over the vocabulary, said representation layer
comprising a concave activation layer configured to
perform a concave activation of the predicted impor-
tance over the embedded input sequence;

wherein the representation layer outputs the predicted
term importance of the input sequence as the represen-
tation of the input sequence over the vocabulary in the
ranker of the neural information retrieval model.

17. The neural model of claim 16,

wherein the predicted term importance of the input
sequence can be used to retrieve a document; and

wherein the pretrained language model layer is further
configured to embed each token of the tokenized input
sequence based at least in part on the token’s position
within the input sequence.

18. The neural model of claim 16, wherein the pretrained
language model layer is pretrained using a masked language
model (MLLM) training method.

19. The neural model of claim 16, wherein the pretrained
language model layer comprises a bidirectional encoder
representations from transformers (BERT) model.

20. The neural model of claim 16, wherein each of the one
or more linear layers comprises a log it function comprising
activation and a normalization layer, the linear layers com-
bining the transformation with the respective vocabulary
token of the embedded input sequence and a token-level
bias.

21. The neural model of claim 16, wherein said concave
activation layer is configured to, for each token in the
vocabulary, combine or maximize a log-saturation of the
determined importance of the token over the vocabulary and
over the embedded input sequence, wherein the log-satura-
tion prevents terms in the vocabulary from dominating and
provides sparsity in the representation.

22. The neural model of claim 16, wherein said concave
activation layer is configured to apply an activation function
to the determined importance of the token in the vocabulary
over the embedded input sequence to ensure positivity of the
determined importance, and applying a concave function on
the result of the activation function.

23. The neural model of claim 16, wherein the neural
model is incorporated in a first-stage ranker;

wherein the first-stage ranker is further configured to:
compare the predicted term importance for the input

sequence to predicted term importance for each of a
plurality of candidate sequences generated by the
neural model, the candidate sequences being respec-
tively associated with candidate documents;
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rank the plurality of candidate sequences based on said
comparing; and

retrieve a subset of the documents having a highest
ranking.

24. The neural model of claim 23, wherein said comparing
comprises calculating a dot product between the output
predicted term importance and the predicted term impor-
tance for each of the plurality of candidate sequences.

25. The neural model of claim 16, wherein the neural
model is incorporated in the first-stage ranker;

wherein the first-stage ranker is further configured to:

determine a ranking score for each of a plurality of
candidate documents using the neural model; and
rank the plurality of candidate documents based on the
determined ranking score;
wherein said determining a ranking score comprises:
determine the representation for each candidate
document over the vocabulary; and
compare the determined representation to a repre-
sentation of a received input sequence to deter-
mine the ranking score;
the first-stage ranker being further configured to retrieve
a subset of the documents having a highest ranking.

26. The neural model of claim 25, wherein the represen-
tation of the new input sequence is determined using the
neural model.

27. The neural model of claim 25, wherein the represen-
tation of the new input sequence is determined at least by
tokenizing the new input sequence over the vocabulary.

28. The neural model of claim 25, wherein said deter-
mining the representation for each candidate document of
the vocabulary is performed offline.

29. A computer implemented method for training of a
neural model for providing a representation of an input
sequence over a vocabulary in a ranker of an information
retriever, the method comprising:

providing the neural model with: (i) a tokenizer layer

configured to tokenize the input sequence using the
vocabulary; (ii) an input embedding layer configured to
embed each token of the tokenized input sequence
based at least on the vocabulary; (iii) a predictor layer
configured to predict an importance for each token of
the input sequence over the vocabulary, and (iv) a
representation layer configured to receive the predicted
importance with respect to each token over the vocabu-
lary and obtain a predicted term importance of the input
sequence over the vocabulary, said representation layer
comprising a concave activation layer configured to
perform a concave activation of the predicted impor-
tance over the input sequence,

initializing parameters of the neural model; and

training the neural model using a dataset comprising a

plurality of documents;

wherein said training the neural model jointly optimizes a

loss comprising a ranking loss and at least one sparse
regularization loss; and

wherein the ranking loss and/or the at least one sparse

regularization loss is weighted by a weighting param-
eter.

30. The method of claim 29, wherein the dataset com-
prises a plurality of documents.
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31. The method of claim 29, wherein the dataset com-
prises a plurality of queries and, for each of the queries, at
least one positive document associated with the query and at
least one negative document not associated with the query.

32. The method of claim 31,

wherein said training uses a plurality of batches;

wherein each batch includes a plurality of queries, and,

for each of the queries, each of: a positive document
associated with the query, at least one negative docu-
ment that is a positive document associated with other
queries, and at least one hard negative document not
associated with any of the queries in the batch, the at
least one hard negative document being generated by
sampling a model.

33. The method of claim 32, wherein the at least one
negative document not associated with the query is gener-
ated by a ranking model.

34. The method of claim 29,

wherein the sparse regularization loss is calculated for

each of queries and documents, each being weighted by
a weight parameter.

35. The method of claim 29,

wherein the sparse regularization loss comprises one or

more of:

an > , regularization loss for minimizing the = ; norm of

the sparse representations generated by the neural
model; or

a FLOPS regularization loss for smooth relaxation of an

average number of floating-point operations for com-
puting a score of documents.

36. The method of claim 29, further comprising:

distillation training the first-stage ranker and a re-ranker

using generated training triplets, each triplet compris-
ing a query, a relevant passage, and a non-relevant
passage;

using the trained first-stage ranker to generate new train-

ing triplets, the generated triplets comprising harder
negatives;

using the trained re-ranker to generate desired scores from

the generated new training triplets; and

second training the first-stage ranker using said generated

new training triplets and desired scores.

37. The method of claim 36, wherein said second training
is from scratch.

38. The method of claim 36, wherein the training is
performed offline.
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39. A non-transitory computer-readable medium having
executable instructions stored thereon for causing a proces-
sor and a memory to implement a method for providing a
representation of an input sequence over a vocabulary in a
first-stage ranker of a neural information retrieval model, the
method comprising:
embedding each token of a tokenized input sequence
based at least on the vocabulary to provide an embed-
ded input sequence of tokens, the tokenized input
sequence being tokenized using the vocabulary;

determining a prediction of an importance of each token
over the vocabulary with respect to each token of the
embedded input sequence; and

obtaining a predicted term importance of the input

sequence as a representation of the input sequence over
the vocabulary by performing an activation using a
concave activation function over the embedded input
sequence; and

outputting the predicted term importance;

wherein said embedding and said determining a predic-

tion are performed by a pretrained language model.

40. A computed implemented method for processing an
input sequence, the method comprising:

embedding each token of a tokenized input sequence

based at least on a predetermined vocabulary to provide
an embedded input sequence of tokens;

predicting term importance of the embedded input

sequence of tokens over the predetermined vocabulary;
and

outputting the predicted term importance of the input

sequence of tokens;

wherein the predicted term importance of the input

sequence of tokens provides a representation of the
input sequence over a predetermined vocabulary in a
first-stage ranker of a neural information retrieval
model.

41. The method of claim 40, wherein said embedding and
said predicting use a pretrained language model.

42. The method of claim 40, wherein said predicting
obtains the predicted term importance of the input sequence
as a representation of the input sequence over the vocabulary
by an importance of each token over the vocabulary.

43. The method of claim 42, wherein the input sequence
is one of a query and a document sequence.
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