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ABSTRACT

Collaborative filtering (CF) aims to recommend items based
on prior user interaction. Despite their success, CF tech-
niques do not handle data sparsity well, especially in the
case of the cold start problem where there is no past rating
for an item. In this paper, we provide a framework, which is
able to tackle such issues by considering item-related emo-
tions and semantic data. In order to predict the rating of an
item for a given user, this framework relies on an extension
of Latent Dirichlet Allocation, and on gradient boosted trees
for the final prediction. We apply this framework to movie
recommendation and consider two emotion spaces extracted
from the movie plot summary and the reviews, and three se-
mantic spaces: actor, director, and genre. Experiments with
the 100K and 1M MovieLens datasets show that including
emotion and semantic information significantly improves the
accuracy of prediction and improves upon the state-of-the-
art CF techniques. We also analyse the importance of each
feature space and describe some uncovered latent groups.

Categories and Subject Descriptors: H.3.3 Information
Storage and Retrieval - Information Search and Retrieval -

Information Filtering

General Terms: Performance, Experimentation
Keywords: Semantic, Emotion, Collaborative Recommen-
dation, Collaborative Filtering

1. INTRODUCTION
Recommender systems attempt to alleviate users’ infor-

mation overload by filtering documents that are not relevant
to the users’ interests [1]. Amongst these, collaborative fil-
tering (CF) systems are the most widely used [19]. CF tech-
niques recommend an item to a user by considering data
gathered from other users [7]. Examples of such systems are
Amazon.com for products, and Netflix1 for movies.

1
http://www.netflixprize.com/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’11, July 24–28, 2011, Beijing, China.
Copyright 2011 ACM 978-1-4503-0757-4/11/07 ...$10.00.

In this work, we propose a novel approach for CF by in-
tegrating semantic and emotion information along with the
rating information. This is motivated by the fact that a
user likes a movie for a set of latent reasons, e.g. due to
style of its direction. This information can improve the CF
system prediction accuracy, especially when data is sparse,
i.e. when there is not enough data available (e.g. ratings)
to be used by standard CF techniques. Data sparsity is a
well-known problem for CF systems [1] and in the extreme
case of the so-called “cold start” problem, there is no rat-
ing for new users or items, making the prediction process
impossible.

From a technical perspective, for each semantic (e.g. ac-
tor) and emotion (e.g. plot summary emotion) space we
propose to construct latent groups of users. In order to do
so, we extend a well-known model-based approach, namely
Latent Dirichlet Allocation (LDA) [2]. In each space, we
propose a methodology to compute the probability that a
given user likes an item. Finally, in order to predict a rat-
ing, the information about the different spaces is aggregated
using standard machine learning techniques.

Our work also is one of the few that explores the use of
emotion in IR. Emotion is being proposed as a good feature
to use in IR experiments [21]. Recent advances in psychol-
ogy and linguistics make emotion extraction from textual
documents feasible, thus making it appropriate to consider
emotional features in IR. Despite their potential important
role, emotions are seldom used in CF. In this work, we ex-
tracted emotions using the OCC2 model (Section 3.1), and
developed a sophisticated psycho-linguistic model to extract
emotions expressed in movie reviews and plot summaries.
We use these as a new source of information that indicates
whether a movie will be liked or not by any user.

Finally, from an experimental point of view, we have con-
ducted extensive experiments where we vary the sparsity
of the dataset and compare our models to two state-of-the-
art CF approaches. Furthermore we present preliminary
experiments in an item cold start scenario and analyse qual-
itatively the latent spaces uncovered by our extended LDA
approach.

The rest of the paper is organised as follows: Section 2
discusses related works in CF and emotion extraction tech-
niques, our approach is described in Section 3, experiment
methodology in Section 4, results in Section 5, and finally
the discussion and conclusion in Section 6.

2OCC stands for the creators of the model, Ortony, Clore
and Collins.
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2. BACKGROUND

2.1 Collaborative Filtering Categories
CF techniques mostly make use of users’ past ratings to

predict user’s level of interest for an item. Despite their
success they face issues of scalability and sparsity [1].

The scalability problem refers to the quantity of data, i.e.
the number of users and items: many CF algorithms fail to
scale to big datasets. This issue is further stressed by the
fact that in real-world systems, new items and new users
appear every day, therefore generating a huge amount of
data.

The sparsity problem refers to the situations where the ra-
tio of unrated items to rated ones is high therefore not pro-
viding enough information for CF systems for their predic-
tions. Data sparsity can be down to many factors. Firstly,
judging is a cognitively expensive activity [6]. Secondly,
there are unpopular or unseen items [17]. Finally, in spe-
cial cases, known as the cold start problem (i.e. new user
and/or new item), no ratings are available at all. In the fol-
lowing, we discuss how previous works in CF have tackled
these two challenges.

CF systems can be divided into memory- and model-based
approaches [1]. In a memory-based approach, recommenda-
tion is made by determining the nearest neighbours of a
user and/or item, and then aggregating the ratings of these
neighbours. These CF techniques have the advantage of be-
ing better adapted to users with unusual tastes, but they are
impractical to use [7] due to scalability issues since calculat-
ing the neighbourhood for users and/or items can be time
consuming, especially in real life (i.e. commercial) datasets.

Model-based techniques learn a user and/or item model
from data [7] and are able to scale to large datasets; the
model proposed in this paper lies in this category. There are
many different model-based approaches such as regression
models [27] based on user and item features or clustering of
user and/or items, but the most successful ones are based
on dimensionality reduction techniques because they deal
better with data sparsity. We rely on such techniques in
this work.

Dimensionality reduction techniques find lower dimensi-
onal latent topics from a higher dimensional information
space. The most well known of these approaches are La-
tent semantic indexing (LSI), Principal Component Analy-
sis (PCA), or probabilistic approaches like the probabilistic
LSI (pLSI) [8], nonparametric probabilistic Principal Com-
ponent Analysis (NPCA) and LDA [2]. A downside of reduc-
ing the dimension is that important information (i.e. rat-
ings) that can be useful for predicting unusual user-item
ratings may also be discarded [30].

In order to deal with different feature spaces, we base our
work on LDA, which can be extended for our purposes and
has been shown to be competitive compared to state-of-the-
art CF techniques, outperforming the unigram model and
pLSI [2]. This approach is also the base of many state-of-
the-art CF systems such as the URP model by Marlin [14].
LDA will assign high probabilities to movies that are liked
and judged by many users thus favouring popularity over
the fact of being liked. This “popularity” problem becomes
worse when feature spaces are used since some features can
be present in just a few movies (e.g. a user likes an actor
who has played only in a few not so popular movies). In this

work, we show how an extension of LDA can overcome this
problem.

In order to cope with data sparsity, it is necessary to resort
to external sources of information. This becomes mandatory
when dealing with the cold start problem, since the absence
of rating hinders the possibility of using CF techniques that
rely only on rating information.

A common approach is to use the representation of users
and items to predict ratings. For instance, [25] first uses
these representations along with a user profile to create new
ratings and then applies the standard CF techniques on the
denser data. However, in these approaches, the similarity
between item and user is based on the actual representations
of their contents and not on the latent relation among them.

A second approach tries to use this external information
by capturing the latent relationship between items and users.
Mobasher [19] uses a memory-based approach that takes
advantage of an ontology and of a latent semantic model.
However, creating and maintaining the ontology is a very
laborious task. Park and Chu [24] use regression techniques
where user demographical information and the item meta-
data are used as features. However, the user demographic
information is unreliable in general and, more importantly,
in their approach users are not characterised by the movies
they rated. Finally, Moshfeghi et al. [20] proposed to use
a memory-based approach where the neighbourhood of an
item in semantic spaces was used to predict the rating. How-
ever, in our work, we use a model-based technique, which can
scale to large datasets and also considers both semantic and
emotion information.

2.2 Emotion and Collaborative Filtering
Emotions are considered to be important factors influenc-

ing overall human effectiveness including the rational tasks
such as reasoning, decision-making, communication and in-
teraction [9]. In recent years there has been an increasing
amount of research in both academia and industry to enable
computers to detect emotions [3]. This is due to the utility
of emotion information in applications such as those in affec-
tive computing, opinion mining, market analysis and human
computer interaction. For example, Winoto and Tang [29]
investigated the effect of user mood on their ratings and con-
sequently modified a collaborative recommender system to
depend on user mood. However, mood is difficult to gather
since it either needs explicit feedback or relies on unreliable
and invasive techniques (e.g. face detection). Fortunately,
due to advances in NLP, we now have reliable tools to ex-
tract emotion data from textual sources [28]. Our approach
exploits such techniques to extract emotional information
and apply it in CF algorithms.

Text does not only contain topical but also emotional in-
formation. In fact, text contains clues to emotions related
to what the writer wants to transmit or what his or her
mood was at the time of writing [28]. Emotions extracted
from text were first used in a sentiment analysis task [28].
The essential issue in sentiment analysis is to identify the
positive (favourable) or negative (unfavourable) opinion to-
wards the topic of a text. Sentiments extracted from movie
reviews have been used to infer unknown ratings of users [23,
5]. Existing approaches (using sentiment in CF) are com-
plementary to our work. For example using sentiment as a
substitute for ratings [11] or relying on sentiment expressed
over movie aspects (e.g. actors in the movie are good/bad)
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in order to provide opinionated ratings [10] could be used
likewise in our work.

Other than using sentiments, none of the works exploit the
much richer emotion information for collaborative filtering.
In psycholinguistic and its practical applications, emotion
sensing requires a significantly more detailed text analysis,
since emotions are a finer-grained version of sentiment. We
believe that this extra information is useful for CF.

There are multiple views on what emotions are and how
they can be represented [9]. Ekman regards emotion as psy-
chosomatic states and categorises them into six discrete cat-
egories3 [3]. Some commercial systems follow this approach
in order to classify emails [12]. The alternative OCC model
[22] is considered to be more informative than Ekman’s by
the cognitive psychological community. It specifies 22 emo-
tion types (joy, distress, happy-for, sorry-for, resentment,
gloating, hope, fear, satisfaction, fears-confirmed, relief, dis-
appointment, shock, surprise, pride, shame, admiration, re-
proach, gratification, remorse, gratitude and anger) and two
cognitive states (love and hate), based on the valence reac-
tion to agents, events and objects. One of the state-of-the-
art emotion extraction methods was introduced by Shaikh
et al. [28]. It adapts the OCC model for textual documents
employing natural language processing techniques for emo-
tion extraction. We use this method to identify emotions in
text.

Given the improvement of emotion extraction systems and
the overwhelming engagement of users in providing user-
generated content and evidence on the role of emotion in
decision making, we firmly believe that it is now appropri-
ate to exploit emotions in recommendation. In contrast to
previous work, we do not use sentiments to infer rating as-
sociated to a user review, but we instead use emotions as
another source of information about an item, and show in
the experiments that emotion information extracted from
movie reviews and plot summaries can be useful to tackle
the data sparsity problem.

3. APPROACH
In our approach, we postulate that CF techniques can be

improved by taking into account item semantic and emo-
tion information. In this section we describe our framework
showing how it can be applied to movie recommendation.

We first suppose that a movie can be described as a set of
features in a so-called feature space s. For example, in the
actor space, a movie is described by the set of actors that
played in the movie. The different spaces that we consider
are further described in Section 3.1.

For a given space s, we first evaluate the probability that
a user u, defined by his/her past ratings, likes the movie m

that is described by a feature f (e.g. De Niro played in the
movie):

P (+|f, u, s) (1)

where + denotes the event that a user likes a movie. In
Section 3.2, we show how LDA was extended in order to
compute this value.

As a movie is described by a set of features (e.g. actors
in the actor space) and thus it is necessary to aggregate the
probability in Eq. (1) over these features, i.e. to estimate

3
Specifically happiness, sadness, fear, anger, disgust and surprise

the probability that a movie m is liked by user u:

P (+|m, u, s) (2)

We show in Section 3.3 a way to estimate Eq. (2) given the
different probabilities calculated with Eq. (1) for each pos-
sible feature where the presence of a feature independently
influences the relevance of an item.

Because the underlying characteristics of feature spaces
vary, they provide different, and hopefully complementary
views on the same object. Therefore we chose to use a
machine learning approach to combine the prediction made
on individual spaces (Section 4.3.2). The performance of
each individual feature space, and discussion of whether they
complement each other is in Section 4.

3.1 Feature Spaces
In this paper, we considered three types of feature spaces.

The first and simplest type of feature space is movie space
where we consider the movie itself as a feature. In this space,
the probability of a movie to be liked is directly given by Eq.
(1) where f is the movie at hand. It is the space on which
most of the CF systems are based since it relates movie and
users by their ratings.

The second type of feature space is semantic. In this work,
we consider three such spaces, namely actor, director and
genre spaces, since they are readily available on the Web and
are likely to be good predictors for user ratings. A movie is
represented as the set of features that characterise the movie
in each of these spaces. For example, in the actor space, the
movie Dr. Mabuse: The Gambler is associated with the list
of its actors, i.e. Rudolf Klein-Rogge, Aud Egede Nissen,
etc.

Finally the last type of feature space is the emotion space
where for each movie, emotion features are constructed based
on the emotion extracted from its reviews or plot summaries.
In order to extract emotions from text, we used our imple-
mentation4 of Shaikh et al. [28] which is considered as the
state-of-the-art method. Since the extraction is sentence-
based, the following explains the method of aggregating the
detected emotions for movie related texts.

Both movie reviews and plot summaries are composed of
a set of texts, which in turn are composed of a set of sen-
tences. Let T denotes the set of texts associated to a movie
(either reviews or plot summaries), and St the set of sen-
tences associated to a text t ∈ T .

The emotion classifier of Shaikh et al. [28] makes a bi-
nary decision about each emotion for a sentence, i.e. decides
whether the emotion is present or not. For each sentence k

of a text t, we can use this classifier to construct a vector of
24 components, each of those associated with one of the 22
emotions and two cognitive states (see Section 2.2). Each
component can take the value 0 (the emotion is not present
in the sentence) or 1 (the emotion is present).

In order to represent the emotions in a text t ∈ T , we sum
the emotion vectors of the sentences in t. Since we want to
give equal importance to each text, we normalise the values
by dividing by the number of sentences. Then, for a set of
texts T we sum the vectors corresponding to the individual
texts and normalise again, this time by the number of texts.

4
This is due to the fact that some components of Shaikh et al.’s sys-

tem are not available. Our implementation achieve a better perfor-
mance than the Liu et al. [13] system, which is considered as another
state-of-the-art emotion extraction method [28]

627



Formally an emotion vector for a set of texts T is defined as

emotions(T ) =
1

|T |

X

t∈T

1

|St|

X

k∈St

emotions(k) (3)

Since we use a LDA model (see Section 3.2) we eventually
need to discretize the components of the emotion vector.
As the distribution of values for each emotion can be very
different we used a non-parametric way of discretizing by
assigning to each value its corresponding quartile.

For example, if the values of the component corresponding
to the emotion“fear” are distributed evenly in the four quar-
tiles [0, 0.3), [0.3, 0.4), [0.4, 0.75) and [0.75, 1], then a value
of 0.32 for fear would be transformed into 2. From an LDA
perspective, this would in turn be represented by “fear-2”.

3.2 Building Latent Spaces
In this section, we show how to estimate the probability

that a movie is liked or disliked because of a feature. We
build upon LDA [2] which is a generative probabilistic model
for discrete data collection mainly used for textual corpora.

LDA represents documents as a distribution probability
over latent topics, where each latent topic is a distribution
over words. Documents that have similar topics should share
the same latent topic distribution. This can be paralleled
with CF where users who share the same ratings for the
same items have related interests, and should thus be in the
same latent groups that are defined by a similar distribution
over features.

In the LDA approach to CF described5 in [2], a user is de-
fined by a probability distribution over a set of latent groups.
Each group in turn defines a probability distribution over
the movies that are liked by the users represented by this
group. It is then possible to compute the probability that a
user likes a movie by marginalising over the different possible
latent groups. More formally, LDA defines the probability
to observe a series of movies M+

u = (m1, . . . , mn) liked by
a user u:

p
`

M+
u

˛

˛α, β
´

=

Z

p (θ|α)

 

n
Y

i=1

T
X

z=1

p (z|θ) p (mi|βz)

!

dθ

(4)
where T is the number of latent groups, θ follows Dirichlet
distribution of hyper-parameters α, z (the latent group) fol-
lows a multinomial distribution given by θ and finally the
probability of liking a movie m given the latent set of users
z follows a multinomial distribution given by βz. The model
is fully specified by the α and the βz for each possible latent
group z. Those hyper-parameters are learnt by maximising
the likelihood of the dataset (Section 4.3.1).

However, one of the problems of LDA is that it gives high
probabilities to popular movies. Let us illustrate this prob-
lem with an example. First, consider two movies judged the
same number of times. The probability given by LDA will
rank the two movies in order of their probability to be liked.
But, if the first movie has been judged by all the users and
liked half of the time, it will have the same probability as
another movie judged by only half of the users but liked all
the time. This is not desirable.

This LDA limitation is due to the fact that in the movie
space, LDA assigns high probabilities to movies that are

5
To ease the reading, we adapted here the notations and concepts.

For example, we refer to latent topics as latent groups since we are
performing LDA on non textual information.

liked and judged by many users. Thus the probability as-
signed to a movie m for a given latent group does not corre-
spond to the probability that this movie would be liked by a
user of this latent group, but rather to the probability that
if we pick at random a movie liked by a user of this latent
group, it will be m. Formally, LDA gives us the joint prob-
ability P (+,m|u, s) instead of the conditional probability
P (+|m, u, s).

This “popularity”problem becomes worse when using fea-
ture spaces because some features can be presented in just
a few movies (like an actor who has played only in a few not
so popular movies).

We propose to alleviate this problem by considering neg-
ative information (i.e in movie space, movies that have been
disliked, or in semantic or emotion space, features that ap-
pear in a movie that has been disliked). That is, we define
LDA as a generative process of a series of couples feature-
decision Fu,s = ((f1, d1), . . . , (fn, dn) where fi is a feature
and di its associated decision, either “liked” (+) or “dis-
liked” (-):

p (Fu,s|α, β) =

Z

p (θ|α)

 

n
Y

i=1

T
X

z=1

p (z|θ) p (fi, di|βz)

!

dθ

Let us illustrate how the set of couples is computed in the
actor space. Assume that a user has (i) liked a movie with
actors a, b and c; (ii) disliked a movie with actors a and
b; (iii) liked a movie with actors a and d. This user would
be represented by the couples (a, +), (b, +), (c, +), (a,−),
(b,−), (a, +) and (d, +).

Besides addressing the popularity problem, this approach
also has two advantages. First, we consider more informa-
tion to learn the LDA latent groups, since negative informa-
tion is used. Second, user groups reflect not only features
(e.g. actors) that appear in the movies they like, but also
in the movies they don’t like, thus providing richer informa-
tion.

The LDA model is used to compute the posterior distri-
bution of whether the feature f indicates a movie liked (+)
or disliked (-) given the past user interaction Fu,s and the
learnt parameters α and β, that is

P (±, f |u, s) = p (±, f |Fu,s, s, α, β)

In the next section, this probability is used to derive the final
formula corresponding to a movie being liked in a feature
space.

3.3 Probability Estimation based on a Feature
Space

This section presents our methodology for calculating the
probability that a movie is liked given a user and corre-
sponding movie features. Our approach is based on a simple
“averaging” method where the probability that the movie is
liked is the expectation that the movie is liked because of
each of its features. We also tried other forms of aggrega-
tion but preliminary results suggested that they would not
improve over this simple method.

The probability P (+|m,u, s) that user u likes movie m in
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the feature space s can be written as

P (+|m, u, s) =
X

f∈F

P (+, f |m, u, s)

=
X

f∈F

P (+|f, u, s)P (f |m,s) (5)

where F is the set of possible features for a given movie
and where we assumed that (i) features are examined one
at a time to make a decision about whether a movie is liked
or not. In this case, f and f ′ are disjoint events whenever
f 6= f ′; (ii) when the feature is known the judgment does
not depend any more on the movie, i.e. P (+|f, m,u, s) =
P (+|f, u, s); (iii) when there is no judgment involved, the
fact that a given user and a given movie are independent, i.e.
P (u, m) = P (u)P (m); (iv) the fact that a movie has a given
feature is independent from the user, i.e. P (f |m, u, s) =
P (f |m, s).

Eq. (5) reduces to the estimation of two quantities: the
probability of considering the feature f given a movie m and
a space s, i.e. P (f |m, s), and the probability that a user u

likes a movie given that it has the feature f , i.e. P (+|f, u, s).
The latter probability is straightforward to estimate, since

the probability P (+|f, u, s) can be rewritten as

P (+|f, u, s) =
P (+, f |u, s)

P (+, f |u, s) + P (−, f |u, s)
(6)

where P (±, f |u, s) is the probability that the feature f oc-
curs in a movie that is liked (or disliked) by the user u in
the space s, which is given by our extended LDA.

Note that when only a few observations are available for
a given movie the estimations given by Eq. (6) can be un-
reliable. This is especially true when the data sparsity is
high. We tried different smoothing techniques, and report
the best performing one, the Laplace smoothing:

P (+|f, u, s) =
P (+, f |u, s) + ǫ

P (+, f |u, s) + P (−, f |u, s) + 2ǫ
(7)

The ǫ value is set to 0.001× |s|−1 where |s| is the number of
features of space s. This scaling was necessary in order to
adapt to the different spaces where the number of features
can vary greatly.

With respect to the probability P (f |m, s), unless we have
an a priori reason to give more importance to a feature (e.g.
to give a higher importance to the main actors), we can
assume a uniform distribution over the feature present in
the movie m in the space s. Denoting F (m, s) the set of
features present in movie m in the space s and #F (m,s)
the set cardinality, the probability P (f |m, s) is 1

#F (m,s)
if f

is a feature of space s for the movie m and 0 otherwise.
Putting the derived quantities back into Eq. (5), the final

prediction formula is

P (+|m,u, s) =
X

f∈F (m,s)

1

#F (m,s)

P (+, f |u, s) + ǫ

P (f |u, s) + 2ǫ
(8)

Note that in the case of the movie space, each movie is
defined by one distinct feature and the sum reduces to one
term.

Finally, to compute the final rating prediction for a given
item we combine the information from the different spaces
as given by Eq. (8), using boosted trees (see Section 4.3.2).

4. EXPERIMENTS

4.1 Test Collection
Our approach is evaluated on two MovieLens datasets [26]

containing 100,000 ratings for 1682 movies from 943 users
(100K dataset) and 1 million ratings for 3900 movies from
6040 users (1M dataset) respectively. In both datasets, there
are at least 20 movie ratings per user. The rating scale takes
values from 1 (not liked) to 5 (most liked).

We extracted the information needed to define the differ-
ent semantic and emotion spaces from the IMDb website6.
We considered the genre, the actors, and the director as our
semantic spaces. Emotion extracted from plot summaries
and movie reviews was used to define our emotion spaces.

4.2 Evaluation Protocols
The variability of our results was studied by performing

a 10-fold cross validation where each time we used 70% of
the users to train the LDA (Section 4.3.1), and 20% to iden-
tify the number of latent groups for LDA and to train the
boosted trees based on LDA output (Section 4.3.2). The
remaining 10% was used for performing the test.

In order to study the impact of sparsity on our models,
following the standard methodology, we randomly removed
some ratings from the training set so that the maximum
number of rated items per user is below a given threshold
(10, 20 and no limit, coined “full”), where 10 represents the
highest sparsity and full the lowest.

The last processing step divides, for each user, the set of
rated items into two. One set is used to represent the past
history of the user, i.e. to compute the user representation
in the various feature latent spaces. The second set of items
are held out, and their predicted rating is computed with
each model before being compared to the real value in order
to measure the performance of the model. We considered
the following two splitting methodologies:

Random For each user, we randomly divide the items in
two. In doing so, some users might have rated an item
that is held out for testing for another user.

Cold Start 10% of the items that have been rated by the
test users were randomly selected to be the held out
set for all users. In order to ensure that it is a cold
start, we also removed the ratings of these items in the
whole training set.

Metrics.
To measure the performance of the models, we used three

different metrics. First, we report a measure of the average
error made at the rating level. Two of the most widely
used metrics of collaborative filtering, namely MSE (Mean
Squared Error) and MAE (Mean Average Error) belong to
this category. Results were similar for both, and in this
paper, we only report the former due to space limits.

The goal of CF is often to return the relevant items to the
user, such as the top rated movies. The performance of a CF
algorithm with respect to those movies is better measured
by mean average precision (MAP). Due to limited space, we
do not include the complete results, but instead report the
cases where MAP had a different behaviour than MSE.

6
The Internet Movie Database (IMDb, http://www.imdb.com/)
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Evaluation Methodology.
We tested the performance of our models with different

combinations of the features spaces, i.e. Movie (M), Direc-
tor (D), Actor (A), Genre (G) , Review Emotion (R) and
Plot Summary Emotion (P) spaces. The configuration M is
similar to LDA, but as explained in Section 3.2, does make
use of negative information.

In the first set of experiments, we investigated the effect
of each individual space. These models are represented by
the initial Letter associated to each space (M, G, A, D, R
or P).

In the second set of experiments, we investigated the effect
of a combination of spaces. We experimented by using, be-
sides the movie space, only emotion spaces (MPR), semantic
spaces (MGAD) and all the spaces (MGADPR).

Finally, we used three different baselines. First, as a
threshold, we report the performance of a constant rating es-
timator that returns the mean of the ratings in the training
set. Second, for comparison we also report the performance
of the original LDA approach (identified as LDA) along with
our model on movie space (identified as M). Third, as a much
stronger baseline, we report the performance of nonpara-
metric probabilistic principal component analysis (NPCA)
presented by Yu et al. [31], which has been shown to out-
perform other state-of-the-art approaches in the literature.

In the cold start situation, systems that rely on past item
ratings cannot predict ratings for the items that do not pro-
vide such information (e.g. new items). This means, we
will not be able to employ NPCA, original LDA, or our
model based on movie space (M) to address the cold start
problem. In the cases where the M space is combined with
others, we simply removed the space M, leading to combina-
tions based on emotions (PR), semantic spaces (GAD) and
all the spaces (GADPR). It can be argued that the review
emotion space (R) should not be used when we are dealing
with the cold start problem. However, in our experiments,
we consider the reviews as a movie feature rather than a
user feature since any individual who is not part of the CF
system can give these reviews. Moreover, we are interested
to see the effect of utilising the review emotion space when
there is no rating available for a movie.

4.3 Optimising Parameters

4.3.1 LDA

We described how we use LDA in Section 3.2. In order to
train the LDA model, we need binary relevance judgments,
and two sets of hyper-parameters, namely the number of
latent groups T and the initial α and β.

With respect to the transformation into binary values,
ratings of 3 (neutral) were discarded and we mapped 1-2 to
negative, and 4-5 to positive.

We set the initial values of α and β as proposed by Misra
et al. [18]. The number of latent groups has great influence
on the performance of the LDA approach. We used the stan-
dard methods to find the right number of latent groups in
dimensionality reduction techniques based on the likelihood
over a held out set of training data [18].

In this paper, for each space and dataset, we tried sev-
eral different quantities of latent groups, namely 3, 5, 10,
20, 35, 50, 100, 120, and 150. The maximum number of
latent groups was set to 150 for computational reasons. The
number of latent groups was selected by maximising the like-

lihood of observations over the second subset of the training
set.

4.3.2 Boosted Tree

In order to predict the final rating, we use the standard
machine learning technique of gradient boosted trees [4].
The features given to the boosted trees are a set of proba-
bilities given by Eq. (8), one for each of the different spaces
used in a given model, the output is a predicted rating be-
tween 1 and 5.

Note that even in the case of single space-based models,
e.g. M, G or A, boosted trees are still useful since they map
the probability of a movie to be liked to the rating scale.
In order to ensure a fair comparison, we also used boosted
trees to predict a final rating for the LDA-based model.

The parameters used for our experiment were found dur-
ing preliminary experiments. We set the maximum number
of trees to 2000, a maximum tree depth of 3 and a gaussian
cost function that directly optimises the MSE. We used 65%
of the data to train the boosted trees leaving 35% to control
for over-fitting.

5. RESULTS & DISCUSSION
In Section 5.1 we analyse the results for models based on

individual and multiple spaces, and discuss the latent groups
discovered by LDA in Section 5.2.

5.1 Quantitative Study of the Performance of
the Models

Figure 1a (random split) and 1b (cold start split) show
the box plots for the MSE measure, for the two test col-
lections (100K and 1M) and for different levels of sparsity
(10, 20, and full). Each box plot reports, over the 10 cross
validation sets, five important pieces of information namely
the minimum, first, second (median), third, and maximum
quartiles7. We performed a paired t-test between measures
obtained for each user to check the significance of the differ-
ence with the baseline (M in Figure 1a and mean in Figure
1b). We use (*) and (**) to denote the fact that a model
had results different from that of the baseline in all the cross
validation sets with the confidence levels (p < 0.05) and
(p < 0.01) respectively.

Main results.
With respect to models based on several feature spaces,

we observed that the proposed model combining all spaces
(MGADPR) consistently and significantly outperformed oth-
er models, including NPCA (shown in Figure 1a). With low
sparsities, it has a better median and similar variance, and
with high sparsities, it has a slightly better median but a
much lower variance. This shows that substantial perfor-
mance improvements can be achieved by integrating multi-
ple sources of information for predicting ratings.

We can see that the model using movie space (M) has
a slightly better performance (statistically significant) than
original LDA (identified as LDA in Figure 1a) with com-
plete data (1M, Full). However, in case of high sparsity,
this model performed poorly. Hence for this space, popu-
larity is important when data is sparse. We did not observe
the same pattern for the models using semantic or emotion

7
Further information can be found in [16].
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(b) Cold start split

Figure 1: Box plot of MSE for different sparsities (no sparsity, sparsity=20, sparsity=10) and datasets (100K, 1M). The lower
the value, the better the performance. The diamond represents the mean of each model.
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Figure 2: Box plot of the importance of each space in
MGADPR model calculated by boosted trees for different
sparsities (no sparsity, sparsity=10) , and datasets (100K,
1M). The higher the value, the higher the importance. The
diamond represents the mean of each model.

space. In preliminary experiments (not reported here), the
models based on our extended LDA (with negative and posi-
tive information) did outperform those based on the original
LDA model. The improvement of our model, with semantic
or emotion spaces, is significantly better than original LDA
model.

Cold start.
The state-of-the-art methods discussed in this paper do

not handle the cold start problem and we therefore consider
the mean of ratings as our baseline. In Figure 1b we present
how our proposed approach performs in the case of the cold
start problem. There is an overall increase of 0.1 in MSE
for GADRP over the baseline, and this holds for different
level of sparsity. The comparison between the model using
emotion spaces (i.e PR) and the one using semantic spaces
(i.e. GAD) shows a comparable performance between them
(sparsity “full” and 20), but with high sparsity (10), emotion
space based models are performing better.

MAP and MSE.
By comparing the MAP (not shown here) and MSE per-

formances, we can distinguish systems that are good at pre-
dicting the rating on average from those that improve the
top ranking. We observed that movie and actor feature
spaces do perform well at predicting top ranked items (at
the price of a higher variability in the 100K dataset). The

models based on emotions and to some extent genre (G) do
not perform well in terms of MAP compared to the other
spaces. This means that while they are useful to predict ac-
curate ratings, they are not good predictors for highly rated
items.

Analysing Feature Spaces.
Let us now analyse the performance of each feature space

separately. In the case of the full scenario for the 1M dataset,
we have a clear ordering of the different spaces based on their
performance. As shown in Figure 1a, this order is actor, di-
rector genre, plot summary emotion, movie review emotion
and finally movie space. When the sparsity of the database
increases, the best performing spaces (i.e. actor and direc-
tor) degrades more than the others. This is due to the fact
that these spaces have many more features (i.e. the num-
ber of actors or directors is many more than the number of
genres), and hence are more likely to lack information when
sparsity increases. In the extreme case of the cold start prob-
lem, director and actor spaces performed the worst. Another
interesting finding is that emotions are useful in sparse sce-
narios, and especially in cold start situations, as shown by
the comparison of movie review emotion with genre spaces
(Figure 1b).

In addition, the comparison between the model using emo-
tion spaces (i.e MPR) and the one using semantic spaces (i.e.
MGAD) shows a superiority of the latter one in low spar-
sity situations (Full in Figure 1a). Emotion spaces add an
extra dimension of information in high sparsity scenarios as
shown with sparsities of 10 and 20 (random and cold start
splits) since they decrease MSE and the variance of the per-
formance measure.

Finally, in order to investigate further the importance of
the feature spaces, we used the measure of relative influence
proposed by Friedman et al. [4] for boosted trees. Each of
the features is given an importance between 0 and 100, so
that the sum over features equals 100. The importance of
a variable reflects how important the drop in performance
would be, if the feature was to be removed. We report the
box plot of the relative influence over the 10 cross validations
for the model (MGADPR) in Figure 2.

We can observe different relative influences depending on
the amount of data. In the 1M dataset with no sparsity (1M,
Full in Figure 2), the most important spaces are actor, di-
rector, and then genre, and movie. This means that emotion
spaces are not important when the data provides sufficient
information to predict the rating of the movie based on more
direct indicators like the actors in the movie.

However, at the other extreme, i.e. the most sparse sce-
nario (100K, 10 in Figure 2), actor, director and movie space
do not influence the decision making process of boosted trees
as much as the movie review emotion space and genre do.
Again we observe that the movie review emotion space ac-
quires more importance than plot summary emotion space.

It can also be observed that there is a connection between
the number of different features in a feature space and the
use of this feature space for different volumes of data. For
example, genre and emotion spaces have less features in com-
parison to the other ones, and are more likely to be used
when there is not much data (i.e. ratings) to train from.

To investigate whether emotions do bring more informa-
tion than sentiments, we performed experiments using a sen-
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timent feature space8 instead of emotion feature space (fol-
lowing the methodology in Section 3.1). The improvement is
lower, but not significantly, than the one obtained over emo-
tion feature space . However, the usefulness of the emotion
feature space is illustrated in the next section where users’
latent groups implicitly (through LDA) were created based
on the emotions extracted from external movie reviews.

5.2 Analysis of Latent Groups
In this subsection we illustrate the latent groups discov-

ered by LDA with some examples for two of the most impor-
tant semantic spaces (i.e. actor and genre) and the emotion
spaces. Here, we used the data learnt by LDA with the full
data (1M, no sparsity) for better interpretability.

We first selected the most important latent groups based
on the expectation of the probability P (z) over the set of
training users. For each of these latent groups, we calculated
the top and bottom five features f for p(+|f, s) and reported
them in Table 1. Note that the number after each feature
in the table for movie review (R) and plot summary (P)
emotion spaces, corresponds to the discretised quartile to
which it belongs (Section 3.1), and ranges from 1 to 4. We
now discuss our findings, based on the analysis of several
latent groups beyond those presented in the table.

In the actor space, we observe that in most of the la-
tent groups, the important actors (i.e. those who play the
main role) are separated from other actors (e.g. supporting
actors). This is due to the fact that these actors were consis-
tently liked whereas the supporting actors also play in the
movies that a user has not liked. The second observation
is that the actors who are categorised together in a latent
group either play in the same movies or the same genre, or
belong to the same period of time. LDA hence did correctly
put together actors into coherent latent groups.

In the genre space, we observe that the features within
latent groups are also related. For example, the genres with
respectively the highest and the lowest probability do define
distinct types of genre profiles, and the top movies related
to this latent group perfectly match the liked genres.

In the movie review emotion space, we observe that the
features within the latent group indicate those movies for
which users expressed disappointment or dissatisfaction. By
looking at the reviews given for the top movies for this latent
group one can observe supporting comments such as “The
movie had nothing to do with the title.” and “It played off
more as a B movie.” for Soft Toilet Seats and “The story
doesn’t hit you over the head explaining events like most
films” for New Rose Hotel. However, positive comments with
high ambiguity such as “I saw this movie when I was very
young and at first never really understood it.” and “I mis-
take it for a Disney movie a lot of the time but who can
blame me” can be considered as reproach and therefore the
referring movie (in this case The Swan Princess) considered
in the same group. Therefore, if a user has an unusual taste
and likes the movies that the majority of people don’t like
then more such movies will be recommended to him or her.
This feature is unique to this space. On the other hand,
if the interest of the user is similar to the crowd, then the
recommendation will also be common to that of the crowd
such as the movies Sneakers, Amistad, and A Simple Plan

for another important latent group.

8The sentiment values were extracted based on the work
presented in [15].

In the plot summary emotion space, we observe that the
features within latent groups meaningfully select movies bas-
ed on the emotion interpretation of their storyline. For in-
stance, the top latent group corresponds to the movies that
have a twist of story or surprising (or shocking) emotion.
This makes the plot summary different from genre space.
This can be seen better by looking at the top movies for this
latent group. For example, “her character is to be killed off”
or “Her life begins to fall apart” for the movie The Killing

of Sister George or “A . . .mother . . . facing divorce is thrust
back in time . . . Given the chance to change the course of her
life . . . ” for the movie Peggy Sue Got Married, and “John
Shaft . . . first finds himself up against . . . the leader of the
black crime mob . . . finally working with [him] against the
white mafia . . . ” for the movie Shaft.

In order to gain further insight on the relationship between
the different feature spaces, we calculated the Pearson’s cor-
relation of the predicted ratings for the model based on sin-
gle features spaces. We observed that genre and emotion
spaces (especially reviews that have a correlation around
0.8 for the complete dataset) had the highest correlation at
different levels of sparsity. This is an interesting observation
as the information present in these spaces is of a very dif-
ferent nature. However, it can be argued that the emotion
expressed in the movie reviews are influenced the most by
the genre of the movie. Other spaces had rather low corre-
lations (below 0.4), showing that they are more likely to be
complementary. A final observation is that correlation de-
creases when sparsity increases confirming the observation
that considering different feature spaces is important in high
sparsity situations.

6. CONCLUSIONS
In this paper we studied the effect of emotion and semantic

spaces in improving the performance of a model-based CF
system, and analysed the effect of sparsity and dataset sizes
in rating prediction accuracy and recommendation precision.
We observed that movie and actor spaces are the most and
least sensitive spaces to sparsity and dataset size. We also
observe that the model that uses all spaces is the best per-
forming model over all sparsities and datasets performing
better than a state-of-the-art CF system.

The LDA approach to CF was adapted to cluster semantic
movie information as well as emotion information based on
users’ ratings. We proposed to include negative information
(movies that have been disliked) into the LDA generation
process and for each feature space we calculated the proba-
bility that a movie is liked (or not) given a user. Based on
this, we predicted a rating using boosted trees.

The results show that emotional features consistently play
a role in improving the recommendation quality in compar-
ison to the scenario where only the movie space (i.e. the
baseline) is used. Furthermore the effectiveness of emotion
spaces increases with the sparsity of the dataset, especially
in a cold start situation. This indicates that emotion spaces
encapsulate a potential source of information. A comparison
between the improvement achieved in MSE and MAP values
shows that emotion spaces are more effective in predicting
the actual ratings than detecting top rated movies. We also
observed that movie review emotion space and genre space
based models predict similar ratings, but it is important to
note that emotion features are the outcome of an emotion
extraction system and not manually created metadata as is
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Table 1: The five highest and lowest probability features and the five highest probability of being a feature in a liked movie
for the most important latent groups in actor, genre and movie review emotion spaces (No sparsity - 1M dataset)

Space Features with the highest & lowest probability Movies with the highest probability
Actor Highest: Tommy Lee Jones, Samuel L. Jackson, Sean

Connery, Fred Dalton Thompson, James Earl Jones
Lowest: K. Baltz, P. T. Vince, E. Izzard, A. Dick, S. Lawrence

In the Line of Fire, Die Hard, The Mask
of Zorro, U.S. Marshalls, Twister

Genre Highest: Adventure, Crime, Musical, Mystery, Sci-Fi
Lowest: Comedy, War, Documentary, Action, Western

The Man in the Iron Mask, Brenda
Starr, Let’s Get Harry, The Avengers,
Indiana Jones and the Temple of Doom

Movie
Review
Emotion

Highest: reproach-1, reproach-4, surprise-1, distress-1, reproach-2
Lowest: distress-3, joy-2, joy-3, sorry-for-2, resentment-2

Above the Rim, Power 98, Soft Toi-
let Seats, New Rose Hotel, The Swan
Princess

Plot
Summary
Emotion

Highest: surprise-1, shock-3, surprise-2, gloating-4, distress-3
Lowest: joy-1, hate-3, joy-3, hate-2, surprise-3

Peggy Sue Got Married, The French
Connection, Shaft, Blast from the Past,
The Killing of Sister George

the case for genre, thus they do not require costly and time
consuming human intervention.

Emotion extracted from the movie plot summary and mo-
vie review emotion spaces affect system performance differ-
ently. We believe that this is due to the richer emotional con-
tent in opinionated movie reviews than the relatively more
objective plot summary texts. It is also important to con-
sider that there is much room for improving the accuracy of
emotion extraction techniques.

In future work, we would like to improve our predictions
for sparse datasets, relying more on semantic and emotion
spaces. In order to do so, we plan to (1) investigate more
sophisticated ways to aggregate feature probabilities for se-
mantic and emotion spaces, in order to account for the
variance (uncertainty) and importance of each feature (e.g.
distinguish between main and secondary actors); (2) inves-
tigate the effect of semantic and emotion spaces in other
domains such as books and products and (3) more impor-
tantly, we plan to continue working on utilising emotions
extracted from text to improve the performance of infor-
mation retrieval tasks such as novelty, diversification and
personalisation.
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[18] H. Misra, O. Cappé, and F. Yvon. Using lda to detect
semantically incoherent documents. CoNLL’08, 2008.

[19] B. Mobasher, X. Jin, and Y. Zhou. Semantically Enhanced
Collaborative Filtering on the Web. LNCS, 2004.

[20] Y. Moshfeghi, D. Agarwal, B. Piwowarski, and J. M. Jose.
Movie Recommender: Semantically Enriched Unified Relevance
Model for Rating Prediction in Collaborative Filtering.
ECIR’09, 2009.

[21] Y. Moshfeghi and J. M. Jose. Role of emotional features in
collaborative recommendation. ECIR’11, 2011.

[22] A. Ortony, G. Clore, and A. Collins. The cognitive structure
of emotions. Cambridge University Press, 1990.

[23] B. Pang and L. Lee. Seeing stars: Exploiting class relationships
for sentiment categorization with respect to rating scales.
ACL’05, 2005.

[24] S.-T. Park and W. Chu. Pairwise preference regression for
cold-start recommendation. RecSys’09, 2009.

[25] D. Pennock, E. Horvitz, S. Lawrence, and C. Giles.
Collaborative filtering by personality diagnosis: A hybrid
memory-and model-based approach. UAI’00, 2000.

[26] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl.
Grouplens: an open architecture for collaborative filtering of
netnews. CSCW’94, 1994.

[27] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based
collaborative filtering recommendation algorithms. WWW’01,
2001.

[28] M. A. M. Shaikh, H. Prendinger, and M. Ishizuka. A Linguistic
Interpretation of the OCC Emotion Model for Affect Sensing
from Text. Affective Information Processing, 2009.

[29] P. Winoto and T. Y. Tang. The role of user mood in movie
recommendations. Expert Systems with Applications, 2010.

[30] G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu, and
Z. Chen. Scalable collaborative filtering using cluster-based
smoothing. SIGIR’05, 2005.

[31] K. Yu, S. Zhu, J. Lafferty, and Y. Gong. Fast nonparametric
matrix factorisation for large-scale collaborative filtering.
SIGIR’09, 2009.

634




