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Abstract. Collaborative recommender systems aim to recommend items
to a user based on the information gathered from other users who have
similar interests. The current state-of-the-art systems fail to consider the
underlying semantics involved when rating an item. This in turn con-
tributes to many false recommendations. These models hinder the pos-
sibility of explaining why a user has a particular interest or why a user
likes a particular item. In this paper, we develop an approach incorpo-
rating the underlying semantics involved in the rating. Experiments on a
movie database show that this improves the accuracy of the model.

1 Introduction

Recommender systems help users find items they might like in large databases,
thus reducing the information overload problem that such users face. Amongst
recommender systems, collaborative filtering systems are the most successful and
widely used [1]. In collaborative filtering approaches, items are recommended to
a user based on the information gathered from other users who have similar
interests. This subject became an important area of research [2] from the mid
90’s onwards. Over the last decade, much work in both industry and academia
has been carried out to improve such applications [3]. Examples of recommender
systems are Amazon.com for books, CDs and other products [4], MovieLens for
movies [5], and Jester for recommending jokes [6].

Schematically, collaborative filtering systems aim to predict the rating of an
unrated item for a user. The rating is typically a numerical value on a scale be-
tween 1 (dislike) and 5 (like). Two distinct approaches can be distinguished that
aim at predicting ratings, namely memory-based and model-based. To predict a
rating, model-based techniques make predictions based on a hypothetical user
and/or item model. Memory-based approaches use past ratings and comparisons
between users and/or items. In this work, we extend a memory-based approach
because it allowed us to easily include semantic information.

Data sparsity is a known issue with any of these models. Rating data is
typically sparse, firstly because users don’t exhaustively judge all the items
they could. Secondly, there are unpopular or unviewed items. Finally, in special

M. Boughanem et al. (Eds.): ECIR 2009, LNCS 5478, pp. 54–65, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Movie Recommender: Semantically Enriched Unified Relevance Model 55

cases (new item and/or new user), only a few ratings are available. Memory-
based approach can traditionnaly be classified either as item or user based. In
user-based systems, the prediction of the rating of an item for a given user will
depend upon the ratings of the same item by similar users. Similarly, in item-
based systems the predicted rating depends upon the ratings of other similar
items by the same user.

Both user and item-based approaches only use a restricted part of the available
information, because they either restrict the considered ratings to those on the
same item (user-based) or for the same user (item-based). This issue is even more
important when data is sparse. In this paper we extend the work presented in [7]
and propose a unified approach that makes use of all the possible data, i.e. both
similar items and similar users when predicting a new rating in order to alleviate
the sparsity problem.

Besides data sparsity, we postulate that collaborative systems fail to predict ac-
curate ratings because most of them don’t take into account semantic information.
More precisely, the underlying reasons for two users giving the same rating to an
item might be completely different. For instance, one user might be interested in
a movie because of its genre, while another because of one of its actors. Following
this idea, some works have proposed to use semantic information to improve the
performance of their recommendation by using a latent semantic model [8], or an
ontology [9]. The work presented in [1] considers both approaches. The authors in
[10] used ontology languages such as OWL [11] to classify items and used support
vector machine techniques to predict the class of one object.

In this paper, we first define a methodology to compute the similarity of
users and items in semantic spaces. We then describe two ways to integrate this
information into the Wang et al. approach [7], which we chose because of its
potential to easily integrate different sources of evidence. The paper is organised
as follows. Section 2 describes state-of-the-art works in collaborative filtering
with a particular emphasis on the work upon which ours is based. Our approach
is then described in Section 3. Section 4 outlines our methodology. Section 5 gives
the experimental methodology and the results. We then conclude and discuss
future work.

2 Background

In this section, we begin by presenting collaborative filtering work, focussing on
memory-based ones. We then present the approach used in [7], in order to be in
position to present our approach in the subsequent section.

2.1 Related Work

Research in collaborative filtering started with memory-based approaches [7]. In
this type of approach all ratings are stored as-is into memory. To describe how
a rating is predicted, we first need to define the similarity between two users:
Two users are similar if they give the same ratings to the same items. To predict



56 Y. Moshfeghi et al.

the rating of an item i for a user u, this method simply averages the ratings
ri,u′ (same item, different user) weighting them by the similarity between u and
u′. Because of the emphasis on the similarity between users, this approach is
referred to as user-based collaborative filtering [1].

Lack of scalability is one of the shortcomings of user-based approaches. Be-
cause user profiles change rapidly as users interact with the system, the neigh-
bourhood construction phase must be an online process. Therefore, for very large
data sets, the latency for computing the recommendation can be unacceptable.
Item-based collaborative filtering, which is similar to the user-based but swap-
ping the role of the user and the item, was proposed as a solution to the scalability
problem in user-based collaborative filtering [12]. In item-based approaches such
as [12], an item representation can remain the same when users interact with
the system. Therefore, similarity between items can be pre-computed and used
when the system wants to predict a new item’s rating.

As was stated in the introduction, data sparsity is an issue for user or item-
based systems, regardless of the sparsity origin. In general, the number of ratings
that need to be predicted is usually very large compared to the number of ratings
already obtained. This can be even more important, for instance when a user
has unusual preferences [13]. Overcoming this problem is not an easy issue, and
is beyond the scope of this paper.

The data sparsity problem has been tackled by dimensionality reduction tech-
niques. Latent Semantic Indexing is a typical example of such an approach, and
has been used in collaborative filtering [14,15]. A downside of addressing sparsity
issues by reducing the dimension is that it also discards important information
that would have been useful for predicting ratings [16,17].

Another type of approach is model-based collaborative filtering. Algorithms
such as [8,18] predict ratings by learning a model from the collection of rat-
ings. There are several model-based collaborative recommendation approaches
proposed in the literature, such as the Bayesian model [19], probabilistic re-
lational model [20], linear regression model [21] and maximum entropy model
[22]. Other work used unsupervised clustering of user records [23], or supervised
classification models [24].

The advantages of model-based approaches is that they overcome the scal-
ability issue by separating the offline tasks of creating user models from the
real-time task of recommendation generation, and that data sparsity is usually
handled. However, this is at the cost of either tuning of a significant number
of parameters which makes them difficult to be used in practical scenarios [7]
or lower recommendation accuracy [1], which has to do with the fact that as
in dimensionality reduction techniques, machine learning techniques tend to re-
move noise, which in the case of collaborative filtering can be a signal useful for
rating (e.g. preferences shared by a few users).

2.2 Unified Collaborative Filtering Model

We now focus on the work of Wang et al. [7]. Note that we changed sligthly the
notations in order to make them clearer and consistent with our methodology.
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Wang et al. [7] were inspired by the probabilistic models of relevance used in
information retrieval. They presented three different models. The first two are
probabilistic versions of a user-based and item-based memory-based system. The
third is an unified model that uses three sources of information: user’s rating for
different items, other users’ rating for the same item, and ratings from different
but similar users for other but similar items. The last point makes the approach
different to standard memory-based approaches.

We now describe the method more precisely. Let R be the random variable
that takes values between 1 and M where M is the number of rating grades. Let
U and I be discrete random variables over the sample space of respective users
and items. The prediction is then equal to the estimation of the expectation of
the the rating R given the user u and the item i. For simplicity, the events R = r,
U = u, and I = i will be respectively denoted r, u, and i. Using these notations,
for a given user u and a given item i, we have:

E(r|u, i) =
M∑

r=1

rP (r|i, u) =
M∑

r=1

rP (u, i|r)P (r)/
M∑

r=1

P (u, i|r)P (r) (1)

It is easy to evaluate P (r) since it can be estimated by the ratio of the number
ratings equal to r to the total number of ratings made so far.

The problem is now to evaluate the probability to have a given user u and a
given item i knowing that the rating is r. It is postulated that a rating determines
a density over the space of users and items. This density is estimated with a
standard Gaussian kernel. In order to simplify the problem, they also postulated
that the kernel defined over the users and items could be decomposed as the
product of two separate kernels. This gives:

P (u, i|r) =
1

|Sr|
∑

(u′,i′)∈Sr

KU (ru − ru′ )KI(ri − ri′ )

where Sr is the set of user-item couples with a rating r.
In order to cope with data sparsity, they used bandwidth parameters that are

learned automatically from data. The idea is that if users (or items) are far from
each other for the same rating, then the bandwidth will be high, and it will be low
in the opposite case. The bandwidth parameters are learned automatically (given
a training set of users, items and associated ratings) with a variation of the EM
algorithm. Including the bandwidths hU−R (for Users in a Rating space) and
hI−R (for Items in a Rating space) in the above formula gives:

P (u, i|r) =
1

|Sr|
∑

(u′,i′∈Sr)

K(
ru − ru′

hU−R
)K(

ri − ri′

hI−R
) (2)

In order to use a kernel, it is necessary to define a distance, and hence, first
to define the vector space where users and items lie. Wang et al. [7] followed
the standard memory-based approach: A user is represented in a space where
dimensions are the different items and where the components of the vector are



58 Y. Moshfeghi et al.

the ratings he or she made (a rating of 0 is usually used when the user did not
rate the item).

Several different distances can be used in a vector space, including the stan-
dard Euclidian one. However, Wang et al. [7] chose a metric based on cosine
similarity. For two users u and u′ the distance is defined as 1 − cos(u, u′). This
distance actually projects a couple of users in a one dimensional space. More
precisely, it projects the couple into the space defined by the cosine distance
between two users. Other metrics could be considered (e.g. the Pearson correla-
tion coefficient), but the cosine distance has been shown to perform better [25].
Including the distance in formula (1) and using a Gaussian kernel gives the final
formula used to predict a rating:

E(r|u, i) =

∑

u′,i′∈S

ru′,i′e
−1 − cos(ru, ru′)

h2
U−R e

−1 − cos(ri, ri′ )
h2

I−R

∑

u′,i′∈S

e
−1 − cos(ru, ru′)

h2
U−R e

−1 − cos(ri, ri′)
h2

I−R

(3)

The results of their experiments illustrate that the unified model performed bet-
ter than user and item-based. The main reason is that data sparsity is addressed
by taking much more data into account than simple item or user based models.

3 Approach

Like most work in collaborative filtering, the work of Wang et al. [7] relies on a
distance based on the cosine distance between two users (or two items) in the
standard rating space. A number of questions remain unanswered by the rating
representation, for example “why does the user like this item?”, and “What are
the underlying interests of two users that make them similarly rate some items?”.

Our approach addresses these questions by considering semantic spaces. Each
item – whether it is a movie, music, book, product, game, etc. – can be char-
acterised by semantic traits. For example, the genre of a movie can be chosen
among different types as comedy and drama. To compute the similarity between
two items or users, we not only consider the rating space, but also compute
the similarity in semantic spaces. These spaces need to be defined in relation to
the type of items we are dealing with (e.g. movies, books, etc.). For example,
in the case of movies, people are usually interested in specific genres, follow the
movies of specific actors, or have favourite directors. Each of these dimensions
contain valuable information that can be used as an important source of infor-
mation to decide whether an item should be recommended to the user or not.
We associate to each dimension a so-called semantic space.

Our two objectives are to improve prediction accuracy and to address the
problem of data sparsity, since even with a few ratings we might know for
example that a user likes comedy or horror movies. This is also the underly-
ing motivation of [1].
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In this work, we use a movie database. We extracted the information needed
to define the different semantic spaces from the IMDb website1. We considered
the following semantic spaces: the genre, the actors, and the director. Other
information such as title or plot summary for a movie could also be used, but
this is beyond the scope of this work, since they do not consist of discrete cat-
egories like the ones in the previous list. We also discarded information such as
language, because all the rated movies were in English and this does not convey
any information.

4 Methodology

In this section, we describe how we construct a semantic space. For simplification
purposes, we focus on the movie genre semantic space. Its use for other semantic
spaces is straightforward. We then show two ways to integrate our work into the
approach of Wang et al. [7].

4.1 Construction of a Semantic Space

In order to construct a semantic space for the genre of a movie, a first intuitive
idea is to build two vector spaces for each semantic space (one for the users, one
for the items), and define the representation of users and items, as to be able to
compute distances in those spaces.

The different genres a movie belongs to can be extracted from IMDb web-
site. Examples of genres are comedy, horror, drama. In order to represent a
movie in a vector space, we define a the representation of a movie i as a vector
g

′
i = (0, . . . , 0, 1, 0, 0, 1, . . . , 1, . . .) where each dimension corresponds to a genre.

A component is set to 1 if the movie belongs to this genre, and 0 otherwise. Note
that a movie can belong to several different genres.

From the representation of a movie, we construct the vector representing a
user by giving more importance to the genres of the movies the user liked, i.e.
those for which the rating is high. More formally, we define the vector of a user
in the genre space as g

′
u =

∑
ru,ig

′
i where ru,i is the rating of the item i for

user u.
It appears to be logical to then use the cosine in the above defined genre space.

However, this straightforward approach has some shortcomings related to data
sparsity. Consider the case where users will judge similarly items that belong to
comedy and to comedy-drama. That is, a given user will either like both genres
or dislike both. If this is the case, then considering the defined genre space will
not capture this information since two items belonging to respectively comedy
and comedy-drama will have a similarity of 0. This might not be a problem
with genres since there are not so many of them, but this might prove of more
importance with for example actors or directors which are much more numerous
and for which data sparsity might have important effects.
1 The Internet Movie Database (IMDb, http://www.imdb.com/) is an online database

of information related to movies, actors, television shows, production, etc.
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To capture the interpendance between different genres, we chose to represent
users and items in a similarity space. More precisely, users are represented as
vectors in a space where each dimension corresponds to an item i and the vector
component is the similarity between item i and the user u. The vector can be
rewritten for such a user as gu =

(
. . . , cos

(
g

′
u, g

′
i

)
, . . .

)
. We can define a similar

vector space for items.

u1
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To illustrate the latter step of the space
construction, consider the matrix on the left.
Rows correspond to users, items to column,
and cells to the cosine similarity between a
user and an item in the space of g

′
. We use

the rows as the vector representation of users,
and columns as the vector representation of
items, in order to compute the cosine similar-
ity used in the density estimation formulas.
Given the cosine distance between two users
or two items, we can then construct a dis-

tance based on it, defined as 2 − 2 cos(gu, gu′) for users and 2 − 2 cos(gi, gi′) for
items similar to Wang et al. [7].

This method solves the interdependancy problem, i.e. the “comedy versus
comedy-drama problem”: A comedy movie will be similar to the comedy-drama
movie in the newly defined space since the comedy and the comedy-drama movies
are rated similarly by different users. Symmetrically, two users will be similar in
the genre space if they rate similarly the same genres (and not the same items).

4.2 Integrating Semantic Spaces in the Unified Approach

The next step is to use the semantic information, i.e. the distance we defined in
the previous section. We consider two methods for combining semantic and rating
spaces, namely the Kernel Multiplication and Linear Combination of Predictions.
The following two subsections will describe each of these approaches.

Kernel Multiplication. As mentioned in Section 2.2, the rating for a given user
and item can be estimated from Formula 1. However, to estimate P (u, i|r) we con-
sider the rating and various semantic spaces. Therefore, we equate P (u, i|r) and
P (ru, ri, gu, gi|r). Similar to the Wang et al. [7] approach, we define a cosine based
kernel density estimator. The final rating prediction E(r|u, i) is defined by:

∑

u′,i′∈S

ru′,i′e
−1 − cos(ru, ru′)

h2
U−R e

−1 − cos(ri, ri′)
h2

I−R e
−1 − cos(gu, gu′)

h2
U−G e

−1 − cos(gi, gi′)
h2

I−G

∑

u′,i′∈S

e
−1 − cos(ru, ru′)

h2
U−R e

−1 − cos(ri, ri′)

h2
I−R e

−1 − cos(gu, gu′)

h2
U−G e

−1 − cos(gi, gi′)

h2
I−G

(4)
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Linear Combination of Predictions. If we consider the Genre space, for a
given user gu and given Item gi, the estimation of the rating will be:

EG(r|u, i) =
|R|∑

r=1

rP (r|gi, gu) (5)

This same estimation can be done with rating, actor and director spaces. A
linear combination of the estimated rating for a given user and item in each of
the Rating, Genre, Actor, and Director spaces is the final estimation.

This approach gave disappointing results, performing consistently worse than
the previous one. We therefore do not present the results in the experimental
section. We used a naive linear combination approach by considering the steps
of 0.1 to create different combinations, and the linear combination seem to give
better results when the user/item rating to predict is in a low density region of
the space.

5 Experiment

5.1 Test Collection

We performed an evaluation using the Movielens data set, collected by the
Grouplens through the Movielens web site [2]. The dataset spans a period from
September 1997 to April 1998, and contains ratings of 943 users for 1682 movies
(items). Each user has rated at least 20 movies. The rating scale takes values
from 1 (the lowest rating) to 5 (the highest rating).

5.2 Evaluation Protocols

Evaluation Procedure. For testing, 400 users from the test collection were
selected randomly as training users. The remaining users were assigned to the
test set, and used to evaluate models. In the test set, each user’s ratings were
randomly split into two sets of equal size, one for observed items and the other
for held-out items. Held-out items for a user are discarded when predicting, and
are only used for evaluation purposes, i.e. to compare the predicting rating with
the observed one. The semantic spaces are constructed as explained in Section
4.1. For each space, the user and item bandwidths were calculated using the EM
algorithm as described in [7]. We then evaluated the performances of the model
for test set users: The ratings for the held-out items were predicted and compared
to their real value. To ensure result consistency, we repeated the experiments
twenty times for each model, each time with a different training/testing split.

Sparsity. In order to investigate the effect of data sparsity on the performance
of our collaborative filtering methods, we randomly removed some ratings from
the training (or test) set as described below. We first ensured (item sparsity)
that each user in the observed set had not rated more than a given number of
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items (5, 10, 20, 30 and 40). We then ensured (user sparsity) that no item in
the held-out set was rated by more than a given number of users (20, 30, 50 and
100) in the observed set With respect to notation, 5− > 20 means that the user
sparsity is 5 and the item spasity is 20.

Complexity. The computational complexities of creating distance matrix, esti-
mating the bandwidth parameter with EM algorithm and predicting the rating
are O(AB2 +B2A), O(ABN2) and O(kN2) respectively where A is the number
of items, B is the number of users, k is the number of spaces and N refers to the
top-N nearest neighbour. This was derived from estimations given in [7]. In order
to decrease the complexity of calculation (Formula 4), we consider the top-50
nearest users for the test user and top-50 nearest items for the test item. For
complexity reasons, the distance we used was the distance in the rating space.
While it would in theory be better to use the nearest items/users with respect
to the kernel K, in practice this gave us good results.

Metrics. We evaluated our approach and hypotheses using the standard met-
rics of collaborative filtering, namely the mean absolute error MAE and the
mean squared error MSE. MAE corresponds to the average absolute deviation
between observed and predicted ratings, while MSE corresponds to the average
squared deviation. MSE will penalise systems for having a comparatively small
number of big deviations rather than those having a big number of small devia-
tions. For both measures a smaller value indicates a better performance. In the
formula below N is the number of test ratings, ru,i is the actual rating and r̂u,i

is the estimated rating.

MAE = 1/N ×
∑

u,i

|ru,i − r̂u,i| MSE = 1/N ×
∑

u,i

|ru,i − r̂u,i|2 (6)

Evaluation Methodology. We exhaustively tested the performance of models
with different combinations of kernels associated to the Rating (R), Genre (G),
Actor (A), Director (D) spaces. Over the 24−1 different possibilities, the RGAD,
combinations of all kernels, overall outperformed all other methods.

Results. Table 1 shows the MAE and MSE values for the RGAD and R (base-
line) models. We only present the results for the RGAD model as it performed
better than any other combination. Those results which performed better than
the baseline is presented in bold. The results are consistence because we always
have a small variance. Paired t-test was performed on the MAE of the predicted
rating for RGAD and the baseline approach for different sparsity combinations,
and those combinations which had P-values less than 0.05 were denoted in the
table by a star (*).

The main conclusions are that the RGAD model performed consistently better
than the R (baseline) model, except for low user sparsity values (i.e. where only
a few users judged the item). This result was contrary to our expectations, and
shows that the semantic information we extract is also somehow sensitive to
sparsity issues.
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Table 1. MAE, MSE and rating genre, actor, and director bandwidths for different
sparsity configuration (user-item sparsity)

Baseline
(MAE, MSE)

RGAD (MAE,
MSE)

h2
U−R,

h2
I−R

h2
U−G,

h2
I−G

h2
U−A,

h2
I−A

h2
U−D,

h2
I−D

5->20 3.041, 11.402 3.048, 11.436 0.708, 0.537 0.074, 0.144 0.634, 0.671 0.661, 0.781

5->30 2.958, 10.966 2.965, 10.994 0.798, 0.613 0.076, 0.146 0.692, 0.754 0.729, 0.87

5->50 2.811, 10.2 2.82, 3.078 0.779, 0.619 0.07, 0.138 0.674, 0.749 0.717, 0.877

5->100 2.795, 10.137 2.806, 10.184 0.788, 0.644 0.079, 0.142 0.682, 0.758 0.693, 0.871

10->20 1.307, 3.078 1.313, 3.102 1.523, 1.206 0.083, 0.152 1.171, 1.288 1.268, 1.467

10->30 1.286, 2.967 1.293, 3.004 1.522, 1.235 0.083, 0.149 1.195, 1.298 1.274, 1.472

10->50 1.301, 3.081 1.307, 3.108 1.493, 1.217 0.076, 0.145 1.141, 1.266 1.208, 1.44

10->100 1.3, 2.883 1.308, 2.901 1.47, 1.22 0.077, 0.143 1.121, 1.254 1.201, 1.418

20->20 1.028, 1.828 1.013, 1.803 1.71, 1.411 0.071, 0.136 1.127, 1.354 1.198, 1.55

20->30 1.04, 1.898 1.026, 1.871 1.693, 1.418 0.067, 0.133 1.085, 1.335 1.158, 1.534

20->50 1.053, 1.974 1.04, 1.949 1.67, 1.417 0.063, 0.128 1.054, 1.316 1.182, 1.513

20->100 1.051, 1.976 1.04, 1.951 1.635, 1.406 0.062, 0.124 1.014, 1.289 1.142, 1.486

30->20 0.973, 1.586 0.954*, 1.552 1.693, 1.418 0.067, 0.133 1.085, 1.335 1.158, 1.534

30->30 0.978, 1.625 0.96*, 1.588 1.711, 1.441 0.052, 0.12 0.941, 1.297 1.035, 1.515

30->50 0.978, 1.648 0.961*, 1.612 1.693, 1.447 0.052, 0.118 0.91, 1.273 1.055, 1.496

30->100 0.983, 1.687 0.967*, 1.648 1.671, 1.44 0.053, 0.118 0.88, 1.256 1.019, 1.476

40->20 0.95, 1.483 0.928*, 1.441 1.737, 1.44 0.051, 0.123 0.885, 1.297 1.012, 1.522

40->30 0.948, 1.502 0.927*, 1.459 1.718, 1.447 0.048, 0.119 0.844, 1.265 0.98, 1.495

40->50 0.947, 1.525 1.307*, 0.928 1.69, 1.448 0.046, 0.114 0.799, 1.238 0.933, 1.473

40->100 0.947, 1.538 0.929*, 1.495 1.68, 1.445 0.046, 0.113 0.787, 1.224 0.893, 1.456

Analysing the bandwidths is not easy since they depend strongly on the vari-
ation of the distance of the top-50 users/items. However, we note that almost
all values (except for rating) increase abruptly when user sparsity is more than
5. An increase means that the neighbouring items or users taken into account
is smaller, and hence it means that for a sparsity of 5, there is not enough in-
formation for the models to perform well, whatever the space. Moreover, the
less sparse the data is, the more the semantic space bandwidths decrease, which
means that the rating space alone is enough to predict more and more the rat-
ings. This suggests that semantic information is particularly interesting for a
medium sparsity collection.

6 Conclusion

In this paper we investigated the effect of adding semantics to the unified col-
laborative recommendation model as presented in [7]. We extended this work
by taking into account semantic information, such as the genre of a movie. We
proposed two methods to include semantic information, by including semantic
information directly within the density estimator, and by defining different sub-
models that we then combine linearly. The analysis of the experiments shows
that the kernel combination method performed better than linear combination
of prediction. Among the different variants of the first approach, we found that
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the approach that integrated all the semantic subspaces (director, genre, actor
and rating) was significantly better than the baseline method using only ratings.
For future work, we will investigate further methods to exploit semantic infor-
mation in the cases where data sparsity is high. We will also consider other forms
of use of the semantic information: the proposed method considers the rating
to be the same if the user/items are similar in all spaces. However, it might be
interesting to consider models where similarity in some spaces only is required.
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