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1. INTRODUCTION

Evaluation has always been a key problem in Information Retrieval (IR).
The experimental practice started with the work on the Cranfield collection
[Cleverdon 1967] and has been popularized since then by the TREC confer-
ences and other IR challenges. State-of-the-art evaluation metrics are used to
compare different systems and to justify theoretical and/or pragmatic develop-
ments of IR systems. As a part of the evaluation process for emerging IR fields
like XML or Web IR, developing adequate metrics is an essential and an open
question.

Among the different measures and criteria that have been proposed
(see Van Rijsbergen [1979], Baeza-Yates and Ribeiro-Neto [1999], Meadow et al.
[1999] for a description of most of the metrics proposed in IR), standard metrics
are most often combinations of recall and precision. Recall is defined as the ratio
of the number of relevant documents that are retrieved to the total number of
relevant documents. Precision is the proportion of relevant documents among
the retrieved ones. Both measures rely on assumptions concerning the nature
of the collection and the user behavior. These basic assumptions are that (1)
the units to be retrieved are whole documents, (2) the relevance judgements of
different documents are independent, (3) the user reads only one document at a
time before proceeding to the next one, and (4) the user is assumed to consult an
ordered list ranked by decreasing relevance score (as estimated by the retrieval
system) and to stop as soon as his information need is satisfied.

These assumptions need to be reexamined before they can be applied to new
IR paradigms. XML, video, and Web documents, for example, are organized ac-
cording to some logical structure where document elements may share different
relations. This evolution of the document structure changes the way informa-
tion is to be accessed. XML and video1 IR aim at retrieving elements with the
appropriate level of granularity: for example, an element in an XML document
or a shot in a video. In Web retrieval, potential answers are Web pages linked
together. The granularity of the retrieved information unit may be chosen by
the retrieval system. In XML and video IR, the atomic unit to be retrieved is no
longer a whole document, contradicting assumption (1), but rather document
components which best satisfy the user need. Most of the time these compo-
nents are not independent and share some relation. This does not comply with
assumption (2).

Two other major issues concern overlapping and near miss elements. The
former refers to retrieved components which may overlap in some way, for in-
stance, a section and its paragraphs in XML retrieval. The latter is related to
the structural dependence of elements: it seems natural to reward an element
containing a relevant element (e.g., a section containing a relevant paragraph
or a shot containing a relevant video fragment) or giving access to (e.g., hyper-
links) relevant elements. The context of an element thus plays a crucial role.
Assumption (3) implies the absence of user navigation and thus needs to be
modified for taking into account context and navigation.

1In the context of MPEG-7 retrieval.

ACM Transactions on Information Systems, Vol. 25, No. 1, Article 1, Publication date: February 2007.



Precision Recall with User Modeling • 3

Defining an adequate metric for these new IR paradigms is still an open
problem. Most metrics proposed so far for structured IR are not satisfying. The
first generalization of precision recall [Kazai 2003] did not correctly handle
overlapping and near misses. The precision-recall metric proposed by Gövert
et al. [2003] handled overlap but introduced instability in the recall base (i.e.,
the set of relevant elements to which the list returned by the search engine
is compared). Eventually, an interesting extension of the cumulated gain met-
ric [Kekäläinen and Järvelin 2002] was proposed by Kazai et al. [2004]. This
measure is, however, specific to XML retrieval and has no explicit user model.
A thorough discussion of existing metrics and a comparison with PRUM is pro-
vided in Section 4.

The contributions of this article are twofold. First, we propose a general
navigating user model that can be parametrized and adapted to the new IR
paradigms like XML, Web, or video IR. This will provide a formal framework
for modeling the possibility of navigating among the different elements of these
structured information sources. Second, from this user model, we define a gen-
eralization of the classical precision-recall metric and derive the formulas that
will be used to compute it. The proposed metric thus integrates a well-defined
general user model and takes into account structured IR characteristics. It
solves the major issues of structured IR and offers, in particular, a solution
for overlapping and near miss elements. This metric is an extension of the
probabilistic version of the precision-recall metric described in Raghavan et al.
[1989].

The article is organized as follows. The navigating user model is presented
in Section 2. In Section 3, precision-recall is adapted to the new user model.
This new metric is called PRUM for Precision Recall with User Modeling. In
Section 4, we compare PRUM qualitatively with existing metrics. Most of the
formal derivations are described in Appendix A. A proof that PRUM generalizes
precision-recall is given in Appendix B.

2. NAVIGATING USER AND THE RELEVANCE MODEL

Deriving appropriate user models is an essential component of any IR met-
ric. The classic user model used in most flat document retrieval systems is not
adapted to structured IR tasks. A well-defined user model should take into ac-
count the nature of document elements and the relations between the different
elements. Since the usual flat model cannot be naturally extended to take into
account structural information, one needs a new model formulation.

In order to define our user model, we first need to refine and extend the
concept of relevance. While in flat document IR the different units can be con-
sidered as independent, this is not the case in, for example, XML IR: if a para-
graph is exactly what the user would want to see, then its enclosing section
also bears some relevance. One needs to introduce a new concept to make the
distinction between the element(s) the user wants to retrieve and the elements
which may contain or be linked to this desired element and which are in some
sense also relevant. Considering the section/paragraph example, we will say
that both elements are relevant (as they contain desired material) but that
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only the paragraph is ideal. Note that an ideal element is always relevant but
the reverse is true only in classical IR. We will not discuss here how such a unit
can be found (see Piwowarski and Gallinari [2003] and Kazai et al. [2004] for
more details in the case in XML IR) from human assessments; we only suppose
it can be defined.

Current metrics suppose that a user only sees the elements of the list. PRUM,
on the other hand, considers these elements as entry points to the collection.
The context of an entry element a is defined as the set of elements that can
be reached through navigation from a, including a itself. The set of elements
belonging to the context depends on the collection and on the relations between
elements. PRUM assumes that when a user reaches an entry element a, he ex-
plores a part of that element context. This is what we call the user navigational
behavior. When he has explored the element context enough, he proceeds to
the next entry of the list and repeats the process until his information need is
satisfied.

For any item in the list, user navigation is restricted to the context of this
entry element which, in turn, is determined by the document structure. For
modeling the user behavior inside the context, PRUM relies on a probabilistic
model. It can be parametrized to accommodate different settings. The model
parameters can be estimated from user observations: for XML or Web IR, the
probabilities of navigating from an element to its parent, descendants, or sib-
lings or to follow a link can be estimated from the observation of user naviga-
tion behavior. Alternatively, the parameters can also be defined a priori: in Web
retrieval, the user may follow a hyperlink with a probability inversely propor-
tional to the total number of hyperlinks in the document (Pagerank [Lawrence
et al. 1998] uses a similar approximation). In video IR, we could, for example,
use the T2I model [Vries et al. 2004]: a returned result is an entry point in
the video, and users watch the video from this point until their tolerance to
irrelevant material is reached.

In this Section, the user model is described in detail (Section 2.1) and il-
lustrated with some practical examples (Section 2.2). In Section 2.3, we then
present three simplifying hypothesis and discuss their implications. These hy-
potheses are necessary in order to compute PRUM.

2.1 The Generic Navigating User Model

We have defined the context of an element x as the set of elements that are
reachable through navigation from x. After the user selects the first element
in the list, he can either navigate to an element from its context or continue
to the second element of the list. For a given document element ranking, a
stopping criterion is necessary for computing precision-recall values. The usual
assumption is that the user stops after retrieving a given number of relevant
documents [Voorhees 2003]. For our user model, we will suppose that the user
stops consulting the list as soon as he sees a predefined number r of ideal
elements, where r ranges from 1 to the number of ideal elements of a given
query. Given precision at these r points, it is possible to construct a precision-
recall curve by interpolation.

ACM Transactions on Information Systems, Vol. 25, No. 1, Article 1, Publication date: February 2007.
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Following Raghavan et al. [1989], we divide the list consulted by the user into
a ranked and an unranked part. This division of the list into two parts is made
because probabilistic metrics like PRUM are defined conditionally to a given
recall value. If the recall value cannot be reached, the metric is not well defined
theoretically as the probability is conditioned to an impossible event. The list
must then contain (an access to) all ideal elements needed for a given recall
value. It is then necessary to add to the ranked list the remaining elements of
the collection which is then considered unranked.

When a user has exhausted the ranked list, he continues consulting the re-
maining elements that were not ranked by the search engine. In this second
part, there is no preferred list order. Said otherwise, each ordering of the un-
ranked list has the same probability of occurrence. This hypothesis is also made
by Raghavan and is somehow present in classic recall-precision, albeit implic-
itly, and justifies a null precision for recall values that cannot be reached in the
ranked list. Because the unranked list contains a large number of documents,
the probability for a user to find a relevant element is small. Note that for the
TREC evaluation procedure, only the ranked part is considered.

For simplification, we will introduce two hypotheses. First, the ranked part of
the list is supposed totally ordered, and second, one switches back to the classic
user model for the unranked part of the list. Both hypotheses are made in order
to simplify the computation of precision for the proposed user model. These two
limitations are not so important in practice: the former because the effect of
the ties will be smoothed when averaging over different query evaluations, the
latter because the precision drops to very small values whenever the user has
to consult the unranked list.

Figure 1 provides an example of user behavior in accordance with our model.
Note that all the elements in this limited corpus belong to a unique document
and the context of each of these elements is the whole document. Let Fk (ideal
elements Found at k) denote the number of distinct ideal elements seen while
consulting the list until position k. If a user requires 4 ideal elements (R = 4),
a particular sequence of steps he decides to follow could be the following:

(1) he consults element a in the list but does not see its context (except a itself).
Element a is not ideal, hence F1 = 0 and the user continues in the list;

(2) he consults element b but again not its context. This time, the element is
ideal and F2 = 1;

(3) he consults c, and this time decides to explore the context, discovering
element f which is ideal (F3 = 2);

(4) he consults d, explores its context and sees f and i. Element i is not ideal,
while f is ideal, but it has already been seen by the user (F4 still equals 2);

(5) he consults e and discovers g and h in its context. Both elements are ideal
and seen for the first time (hence F5 = 4). The user has found all the
information he needs and stops consulting the list.

This example illustrates different facets of our user model. Steps (1) and (2)
are similar to the standard user model. Step (3) illustrates how the user can
navigate to an ideal element. In Step (4), we show that the same ideal element
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Fig. 1. The user wants to see 4 ideal elements (nodes filled with grey). He has consulted the first

5 elements of the list (a, b, c, d, e), 3 of them ((b, c, e)—bolder lines in the list) leading to ideal

elements. Consulted elements are all within the same document whose structure is shown with

grey lines: a is the root node and has three children (b, c and k), etc. Arrows show the browsing

behavior of the observed user. For example, the user consults the third element of the list and

navigates to an ideal one (f). The fourth element in the list also leads the user to an ideal element

(f), but as it has already been seen, the list element is not an unseen element (hence the thin line

for the list element). We also assume that elements a-e are in the ranked list. The list is composed

of ranked and unranked elements.

can be retrieved multiple times in different contexts. Because it should not
be counted twice, the user can only see an element for the first time once, F
remains equal to 2. Eventually, Step (5) shows how an element can act as a so-
called Best Entry Point [Lalmas and Moutogianni 2000] to more than one ideal
unit: from the fifth consulted item in the list, the user sees two ideal elements
for the first time.

Throughout this article, the verb see will have the following meaning. When
a user sees an element, he figures out rapidly if it is ideal or not. If not, he
quits or navigates to another element. In the XML case, the whole content of a
seen element is not thoroughly read by the user and hence contained elements
cannot be assumed to be seen. In the previous example, after rank 1, the user
has seen element a but not element b, c, or k. We can imagine that element
a contains a lot of irrelevant text before the element b, so that the user is
discouraged before getting to b.

Now we introduce the probabilistic events used to model the user behavior.
Notations and definitions are given in Tables I and II. At a given rank i, we
say that the user has consulted an element x only if it belongs to the part of
the list that was consulted by the user, and we denote it x ∈ Li. For a given
list position i, an element x is seen (or found) by the user only if it belongs to
the explored context of an element consulted between rank 1 and i. This event
is denoted x ∈ Si. Because a user always navigates from a consulted element
to itself, consulted elements are also seen elements: x ∈ Li implies x ∈ Si.
Let P(x → y) denote the probability that the user reaches an element y from
a consulted element x. The set of elements y for which P(x → y) > 0 formally
defines the context of an element x.

ACM Transactions on Information Systems, Vol. 25, No. 1, Article 1, Publication date: February 2007.
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Table I. Random Variables Used in the Model

The second column gives the domain of the random variable: B for boolean, N for integer. We

assume that boolean variables take values 1 (for true) and 0 (for false). Realizations of variables

are in lowercase (r for R, l for L).

Event D Description

Events below are defined for an element in the corpus
Lui B Leads to a previously Unseen Ideal. The element under consideration leads

to an ideal element that was not previously seen.
Cs B Consulted. The element under consideration is in the part of the list consulted

by the user. (Note that an element seen by the user during navigation that

does not belong to the consulted list does not enter in this category)

Rk B Ranked. The element under consideration belongs to the ranked part of the

list.

AtRanki B At Rank i. The element under consideration is the ith of the list.

Other events
R N Number of distinct ideal elements the user requires to see. The user stops

consulting the list after having seen exactly R elements.

Fi N Number of distinct ideal elements which have been found by the user if he

consults the first i elements in the list.

x ∈ Si B The element x has been seen by the user if he consults the i first elements

in the list.

x → y B The user navigated from element x to element y .

Table II. Model Parameters

Notation Description

X The set of all elements

I The set of ideal elements for a given query need

Li The set of elements consulted by the user up to rank i
o Size of the part of the list ranked by the search engine.

u Size of the part of the list composed of unranked elements.

Probability P(x → y) may depend on the query and takes into account all
the physical steps taken by the user in order to go from x to y : For example,
if a Web page x has a link to z which in turn has a link to y , this is reflected
in the probability P(x → y). This situation is illustrated by Figure 3 (right).
There are two indirect paths from a to f, summarized by the probability
P (a → f) = 0.4. Another example would be the following. Suppose we have
measured the navigation of several users between three elements x, y , and z
as depicted in Figure 2. Navigation from x would be summarized by the fol-
lowing probabilities: P(x → x) = 1, P(x → y) = 0.5 + 0.3 × 0.12 = .536, and
P(x → z) = .3 + .5 × .8 = .7.

The set X denotes all the elements x of the database. Although the PRUM
metric could be derived for a multivalued relevance scale, for simplification we
will consider here a binary scale: the set of ideal elements is denoted I, its
cardinality is |I|.

The parameters necessary to compute PRUM are the probability distribution
P(x → y) that the user browses from x to y and the set I. The latter can be
derived from the assessments – from human judges, for example—associated
with a query, while the former has to be defined in accordance with the user
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Fig. 2. An observation of user behaviors. The arrows depict the observed navigation patterns: 50%

of the users navigated from x to y and 80% of them continued to z. 20% of the users did not navigate

to other elements from x.

Fig. 3. XML (left) and Web (right) retrieval. The size of XML elements (in number of words) are

shown inside the nodes (enclosing nodes thus contain more or as many words as their children)

and INEX assessments are shown next to nodes. Web links are shown with plain arrows.

model adopted for the IR paradigm. Ideally, user experiments should be used
in order to set P(x → y) probabilities. As it is not possible to measure an
estimate for every couple of elements x and y , this probability could depend
on some simple characteristics and on some parameters. The characteristics
of x and y could be the size, the position inside the element (XML IR), or the
average number of traversed links between x and y (Web IR). The parameters
could be learned so that P(x → y) provides a good estimate of the ratio of users
that, given one x in the list, would eventually reach y through navigation. Such
experiments are not yet available for structured retrieval and for now P(x → y)
are set using some heuristic function which does not rely on user observations
but on basic assumptions about structural IR paradigms.

In the next section, we present some simple user models already proposed
in the literature.

2.2 Comparison with Existing User Models

The navigating behavior relies on a set of hypotheses that are common to var-
ious previous metrics: (1) the user consults the elements following their order
of appearance in the list returned by the search engine and stops when he has
seen the information he needs; (2) an element is ideal even if a different element
that contains the same (or a part of the) information has been seen previously;
(3) two or more nonideal elements cannot become ideal even if they are merged.

The PRUM user model goes further by considering more complex user
models. For illustration, we show in the following how it encompasses and
generalizes models proposed in the context of XML retrieval.

ACM Transactions on Information Systems, Vol. 25, No. 1, Article 1, Publication date: February 2007.
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Classical (No Browsing). The user does not browse at all: P(x → y) is 0 if
x �= y and 1 otherwise. This user model corresponds to the classic precision-
recall user model. In this case, it can be shown that PRUM leads to the same
values as standard IR precision and recall (see Appendix B).

Tolerance to Irrelevance (T2I). For video and XML retrieval, [Vries et al.
2004] proposed the T2I model. The list elements provide entry points in doc-
uments from where the user starts reading until he finds an ideal element or
his tolerance to irrelevant material has been reached. This can be translated
in terms of the PRUM user model by defining a transition probability between
two elements of the same document to be 1 only if these two elements are close
enough (the distance is usually measured in number of words) and 0 other-
wise. Instead of being binary, the transition probability could also be inversely
proportional to the distance between elements.

Structural. Gövert et al. [2003] and Kazai and Lalmas [2005] consider an
implicit user model where the user is allowed to navigate within the hierarchy
of XML elements. For example, he can browse from a subsection to its enclosing
section or to one of its paragraphs. In this model, P(x → y) is simply the ratio
of the number of words in x and y if they are nested and 0 otherwise.

The computation of the navigational probabilities can take into account any
available information, that, the relevance assessments, the structure of the doc-
uments, and so on. For example, emulating T2I requires considering relevance
information for computing probabilities. The PRUM user model can thus model
rather complex behaviors.

2.3 Simplifying Hypothesis

Assumptions on user behavior are necessary in order to define a tractable
PRUM metric. We describe the 3 main assumptions of our model. We will use
the notation Pr (•) for P(•|R = r) in the remainder of the article. The first simpli-
fication says that user behavior is not affected by the number r of ideal elements
he wants to see.

Hypothesis 2.1. The navigating user behavior is independent of the num-
ber of ideal elements the user requires to see that

∀x, y ∈ X Pr (x → y) = P(x → y).

The two following simplifying assumptions are necessary in order to derive
the metric. The first states that a user navigates to an element independently
of its navigation pattern to other elements.

Hypothesis 2.2. A user consults the context of an element independently
of its previous navigation. Formally,

∀x, y , events x → y are mutually independent,

or equivalently2, for all set of distinct couples (xi, yi):

2A collection of events is mutually independent if the probability of the collection is the product of

the probabilities of all events.
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Pr

(∧
i

xi → yi

)
=

∏
i

Pr (xi → yi)

(xi, xk):

Pr

(∧
{i,k}

xi → xk

)
=

∏
{i,k}

Pr (xi → xk).

This hypothesis has several implications. First, it means that even if the user
navigates from, for example, a section to its first paragraph, this does not give
an indication on whether the user will navigate from the section to the second
paragraph. This hypothesis is not so strong: the fact that a user can first browse
from x to y , and then to z, is captured by the probability of the event x → z.
Let us consider the example of Figure 2. The probability P(x → y ∧ x → z) that
the user navigates from x to both y and z can be computed:

(1) without simplifying hypothesis 2.2. We simply add the probabilities of the
two possibilities: the user navigates first to y and then to z (.5 × .8 = 0.4),
or first to z and then to y (.3 × .12 = .036). This gives a probability of .436.

(2) using hypothesis 2.2. We multiply the probability of navigating to y (nav-
igating first by z or not) and to z (navigating first by y or not): P(x →
y) × P(x → z) = .7 × .536 = .3752

The difference is less than what it would be if we considered only the direct
navigation from x to y and z. Their probability would be equal to .5 and .3,
respectively, yielding a joint probability P(x → y ∧ x → z) of .15 only.

The main reason for hypothesis 2.2 is that it simplifies the computation of the
probability of event x ∈ Si that a user saw an element x after he consulted the
i first ranks of the returned list. Let us briefly examine how this simplification
works. The event x ∈ Si is true if and only if the user consulted a list item,
possibly x itself, that led him to see x. Formally,

x ∈ Si ≡
∨
y∈Li

y → x.

Hypothesis 2.2 implies that all causes (the user saw an element y in the list
and browsed to x) are independent of each other in terms of their abilities to
influence the consequence (the user has seen x). This is the noisy-or hypothe-
sis [Heckerman and Breese 1994] which is often used in probabilistic models
when an event is the consequence of many causes. Formally, we can show that
under Hypotheses 2.2 and 2.1, the probability of the event x ∈ Si simplifies to

Pr (x ∈ Si) = 1 −
∏
y∈Li

(1 − P( y → x)). (1)

This leads to a realistic model whose complexity is linear in terms of the
number of elements leading to x. Without this hypothesis, computation of Pr (x ∈
Si) becomes rapidly intractable. We illustrate the computation of Equation (1)
using the example of Figure 4. If a search engines returns the list (a, b, c),
then after element a is consulted, the probability that the user sees the ideal

ACM Transactions on Information Systems, Vol. 25, No. 1, Article 1, Publication date: February 2007.
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Fig. 4. An ideal element d which belongs to the context of three consulted elements (a, b, c).

Probabilities of navigation are shown next to the arrows.

element d is

1 − (1 − 0.4) = 0.4.

After element b, the probability is

1 − (1 − 0.4)(1 − 0.9) = 0.94,

and after element c, it becomes

1 − (1 − 0.4)(1 − 0.9)(1 − 0.2) = 0.952.

Consequently, 95.2% of users would see d after consulting elements a to c.
Without the noisy-or assumption, this probability would require the knowl-
edge of the interaction of the different navigations between a, b, c, and d. In
practice, the number of such interactions grows exponentially with the number
of elements in the context and becomes intractable.

Our last hypothesis is related to the computation of the probability that the
user sees an ideal element for the first time.

Hypothesis 2.3. The collection of events such that the user has seen an ideal
element x at rank i for the first time for all x ∈ I, are mutually independent
knowing the number of ideal elements already seen at the previous rank. This
is a noisy-or hypothesis and the following result holds:

Pr

(∨
x∈I

x ∈ Si ∧ x �∈ Si−1

∣∣∣∣∣ Fi−1 =s

)
=1 −

∏
x∈I

(1 − Pr (x ∈ Si ∧ x �∈ Si−1|Fi−1 =s)).

This is also a simplification of the reality needed for the calculation of the
precision values. Without this hypothesis, we would have to consider all the
possible cases where the user has seen for the first time k ∈ {1, . . . , |I|} ideal
elements at rank i; this would imply C|I|

k possibilities which is prohibitive in
practice. Like Hypothesis (2.2), Hypothesis (2.3) permits capturing a minimal
interaction of the different causes (the user has seen for the first time a given
ideal element x) on their common consequence (the user has seen for the first
time at least one ideal element). With this hypothesis, the computation becomes
linear with respect to the number of ideal elements for which the probability of
being seen has increased.

For the unranked list, using the navigating user model would be intractable.
Therefore, we switch back to the nonbrowsing user model for this nonranked
part, and the preceding hypotheses need only hold for the ranked part.
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3. PRECISION RECALL WITH USER MODELING

Having described the user model, we are now in position to formally specify
the metric. PRUM is an extension of the probabilistic precision-recall proposed
by Raghavan et al. [1989]. Precision is defined with reference to a recall value,
identified here as a predefined number of ideal elements that the user wants
to see. In our case, the number of elements that need to be consulted to achieve
this recall value is stochastic because it depends on the user behavior, that is,
on his decision to navigate between elements.

In the next section, we define and motivate our metric. We illustrate its
principles with a toy example. We then describe synthetically the equations
that fully define the PRUM metric. The complete derivation is provided in
Appendix A.

3.1 Extension of Raghavan’s Definition

The probabilistic definition of recall-precision presented by Raghavan et al.
[1989] is more general than the one used in TREC [Voorhees 2003]. According
to their definition, the list consulted by the user for a given information need
contains all the elements of the database. The user, who searches for exactly
r ideal elements, stops consulting the list as soon as he finds them. In this
context, the recall level � is the ratio of r to the total number |I| of ideal units.
Precision is defined as the probability that an element consulted by the user is
ideal. Formally, precision at recall level � is written P(Ideal|Cs, L = �, Q = q),
where Cs means the element is in the consulted part of the list and Ideal means
the element is ideal, while Q expresses the user’s query.

We generalise Raghavan’s definition of relevance to fit our more complex
user model. In the PRUM user model, an element of the list might lead the
user to see other elements of the database even if it is not ideal per se. Also, a
user might see an (ideal) element more than once. In Figure 4, elements a, b,
and c can all lead to the ideal element d, and a search engine retrieving them
should be rewarded. Besides the notions of relevant and ideal elements, we
then introduce the new concept of leading to a previously unseen ideal element,
denoted as Lui. If we ignore user browsing (i.e., a consulted element only leads
to itself), this definition degrades to the element is a previously unseen ideal
element. If we further suppose that there are no duplicates in the list, then it
becomes the element is ideal, which is the classica definition (ideal and relevant
are equivalent in standard IR).

In order to average the results over queries, precision is usually computed
at several recall levels � between 0 and 1. Precision in PRUM metric is de-
fined for a given query q (and its associated assessments) at recall level �

as:

P(Lui|Cs, L = �, Q = q),

which is, in the context of a given query q, the probability that an element
consulted by the user leads to an unseen ideal element if the user is searching
for �% of the ideal elements present in the database. We also suppose that an
element leads to itself. In order to simplify notations, we omit from now on

ACM Transactions on Information Systems, Vol. 25, No. 1, Article 1, Publication date: February 2007.



Precision Recall with User Modeling • 13

Fig. 5. An example in Web retrieval. Nodes are the different documents of the database: white

nodes are irrelevant documents, while black nodes are ideal. Navigational probabilities are shown

next to the edges.

the conditioning on Q = q for all the probabilities and events as the metric is
computed for each query separately.

Precision is usually computed for integer values, and interpolation tech-
niques are used to derive precision at an arbitrary recall level. We chose to
use the ceiling interpolation procedure of TREC [Voorhees 2003] where preci-
sion for a given recall level � is the maximum of precision for a recall value
superior or equal to �. We thus restrict the computation of PRUM to recall val-
ues between 1 and |I| in the remainder of the article, and we need to evaluate
the precision at a given recall r:

Pr (Lui|Cs). (2)

In the rest of this section, we summarize PRUM derivation and show how
to compute the measure for any recall value. We also show in Appendix B that
the PRUM formula reduces to the Raghavan’s one when the user model is the
classic IR one.

3.2 PRUM Illustration

Let us illustrate the computation of precision with PRUM using the small
database in Figure 5. Note that the example is computed without some of the
hypotheses we made; PRUM is an approximation of the results described in
the following. It is composed of four Web documents (a-d) with links between
them. Elements a and b are ideal units to be retrieved for a given query, while
elements c and d are not ideal themselves but can lead the user to both a and
b. We set the navigational probabilities so that

—60% of users navigate from d to a;

—40% of users navigate from c to b, from c to a, or from d to b.

How do we evaluate the performance of an engine that returns the list (c,
d, a, b)? Table III gives a summary of the different navigational probabilities
(Table of scenarios). The first column of the upper table corresponds to the
consulted list. The other columns indicate at which rank ideal elements a and
b are first seen according to the different scenarios. For example, the second
column evaluates to .16 the probability that a user navigates to elements a
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Table III.

This table summarizes the different situations that might happen if the database is the one

depicted in Figure 5 and if the list returned by the system is (c, d, a, b). The upper part of the table

shows the list position where either a or b is first seen. The row labeled PS (probability of the

scenario) gives the probability that such a situation is observed. Row CL (consulted and leading to

a previously unseen ideal) gives the number of ranks where a consulted element leads to an ideal

one, while rows C (consulted) give the number of ranks the user has to consult in order to reach a

given recall value. The Exp column gives the expected values of CL and C over the different

configurations

Table of Scenarios

Rank Ideal Elements (seen for the first time)

1 (c) a, b a a b b
2 (d) b a a, b a b
3 (a) a a a
4 (b) b b b Total
PS .16 .096 .144 .144 .0864 .1296 .096 0.0576 .0864 1

Search for one Ideal Element Exp
CL(1) 1 1 1 1 1 1 1 1 1 1
C(1) 1 1 1 1 2 2 1 2 3 1.45

Search for two Ideal Elements Exp
CL(2) 1 2 2 2 1 2 2 2 2 1.75
C(2) 1 2 4 2 2 4 3 3 4 2.71

and b from the first element returned by the engine (c). Similarly, the third
column represents the case where a user discovers element a navigating from
c and element b when navigating from the second element of the engine list.
The probability of such a scenario is .096 since:

P(usernavigatesfrom cto a) × P(userdoesnotnavigatefrom cto b)

× P(usernavigatesfrom dto b) = 0.4 × 0.6 × 0.4 = 0.096.

Note that in this example we don’t have to multiply by the probability that
the user navigates from d to a or not since both events are compatible with
the scenario, and thus would sum to 1 by marginalization. It also means that
PRUM does not make the difference between seeing an ideal element once or
more than once. The other configuration probabilities are computed likewise.
The probabilities over all scenarios naturally sum to one.

Table III shows the number C(r ) of list elements that a user consulted and
the number CL(r ) of consulted elements that actually led the user to discover
an ideal element, where r is the number of ideal elements wanted by the user.
The column Exp reports the expected values for each corresponding row. For
a given line, they are computed by multiplying each cell by the corresponding
probability of scenario (PS), and then by summing all these values, that is.
The precision in PRUM is defined as the ratio of two quantities, that is, the
expected value of CL(r) over the expected value of C(r). The precision at recall
1 is 1/1.45 	 0.691 and, at recall 2, equals 1.75/2.71 	 0.646. These values are
superior to the standard precision-recall estimates (0.333 and 0.5, respectively).
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This is the expected behavior since the first two elements returned by the sys-
tem (c and d) can lead the user to see both ideal units.

We have now seen how to compute precision. In practice, the number of sce-
narios is combinatorial and this naive enumeration approach cannot be used.
Computations in PRUM are then performed using the assumptions introduced
in Section 2.3. The values computed by PRUM equations in the previous exam-
ple are 0.691 and 0.636, respectively, which are close to the exact values given.
The difference is not important since (1) all the systems will be evaluated with
the same bias, and (2) the user model will always be an approximation of the
reality.

3.3 PRUM Metric

We now show how PRUM can be computed for a query and for an arbitrary
recall value r. Precision is then interpolated for any recall value r. This al-
lows one to average precision over queries. To clarify the presentation, we
chose to postpone the formal derivation to Appendix A and only present the
formulas that permit the effective computing of PRUM along with intuitive
motivations.

Starting from Equation (2), we decompose the probability that a consulted
list item leads the user to discover an ideal element Pr (Lui|Cs) using the Bayes
rule:

Pr (Lui|Cs) = Pr (Lui, Cs)

Pr (Cs)
. (3)

As introduced in Section 2, the list is divided into a ranked and an unranked
part. Equation (3) is decomposed accordingly:

(a)︷ ︸︸ ︷
Pr (Lui, Cs, Rk) +

(b)︷ ︸︸ ︷
Pr (Lui, Cs, ¬Rk)

Pr (Cs, Rk)︸ ︷︷ ︸
(c)

+ Pr (Cs, ¬Rk)︸ ︷︷ ︸
(d )

, (4)

where Rk means that the element is in the ranked part of the list.
Parts (a) and (c) in Equation (4) correspond to the ranked part of the list

and are computed with the PRUM user model. Parts (b) and (d) correspond to
the unranked part and are computed with the classic user model. Note that
the unranked list is usually composed of many more elements than the ranked
one: the probability of finding an element leading to an unseen ideal will then
be low, and, in such cases, the difference between the two user models will be
small.

We derive each term of the previous equation in Appendices A.4 (for a and
b) and A.3 (c and d). In Appendix A, we show that (a) and (c) can be expressed
in terms of the probabilities Pr (Fi = s) and Pr (Fi > s|Fi−1 = s).
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Equation (4) can be written in terms of these probabilities:

Pr (Lui|Cs) =
(a)︷ ︸︸ ︷

r−1∑
s=0

o∑
i=1

Pr (Fi−1 = s)Pr (Fi > s|Fi−1 = s) +

(b)︷ ︸︸ ︷
r−1∑
s=0

Pr (Fo = s)(r − s)

r−1∑
s=0

o∑
i=1

Pr (Fi−1 = s)︸ ︷︷ ︸
(c)

+
r−1∑
s=0

Pr (Fo = s)(r − s) ×
(

1 + u − (|I| − s)

|I| − s + 1

)
︸ ︷︷ ︸

(d )

, (5)

where o is the size of the ranked list, and Fo is the number of ideal elements
found at rank o. u is the size of the unranked list, and |I| is the number of ideal
elements. Let us now briefly explain the role of each term in the this equation.

(c) is equivalent to
∑o

i=1 Pr (Fi−1 < r). First consider the deterministic case
where there is no navigation. Pr (Fi−1 < r) is equal to 1 for all the ranks between
1 and the first rank where the user sees r ideal units. Therefore,

∑o
i=1 Pr (Fi−1 <

r) is simply equal to the number of consulted elements in the ranked list when
the user searches for r ideal elements. In the general case, its value will be the
expected number of consulted elements in the ranked list when searching for r
ideal elements. Note that by definition the user has not found any ideal element
before consulting the list so that Pr (Fo = 0) = 1.

(a) is equivalent to
∑o

i=1 Pr (Fi−1 < r, Fi > Fi−1). This is the expected number
of consulted elements in the ranked list that lead a user searching for r ideal
units to see for the first time one or more ideal elements.

(b) is the expected number of ideal and consulted elements after position o.

(d) is the expected number of consulted elements after position o.

The ratio of (a + b) to (c + d) thus corresponds to the (probabilistic) precision
at r. This is the expected number of consulted elements which lead the user
to discover an ideal element divided by the expected number of elements he
consulted. We now describe how the different probabilities in the formula are
computed.

We will need to calculate P(x ∈ Si). According to Equation (1), this can be
computed as

Pr (x ∈ Si) = 1 −
∏
y∈Li

(1 − P( y → x)). (6)

The probability Pr (Fi = s) that the user has found s ideal elements while
consulting the list up to rank i is derived in Appendix A.1. The final expression
used for computing the precision is

Pr (Fi = s) =
∑
A⊆I

|A|=s

(∗)︷ ︸︸ ︷∏
x∈A

P(x ∈ Si)
∏

x∈I\A

P(x �∈ Si), (7)
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where A is a subset of cardinality s of the ideal set I. For a given A, (∗) is the
probability that the user has seen exactly the s ideal elements of the subset A
of I and no other ideal element. Then all the (exclusive) combinations for which
the user has seen exactly s ideal elements are enumerated when summing over
all the possible subsets A of cardinality s. This can be computed in a time
quadratic with respect to the number of elements N for which 1 > P(x ∈ Si) >

0.3 In practice, it can also be approximated by a normal law when N is large
(see Appendix A.1). In our implementation when N > 10, we used the normal
approximation.

In Appendix A.2, Equation (12) shows how to compute the probability P(Fi >

s|Fi−1 = s) that the user discovers an ideal element at position i, knowing that
he has seen s ideal elements before:

Pr (Fi > s|Fi−1 = s)

= 1 −
∏
x∈I

⎛⎜⎜⎜⎝1 −

(∗∗)︷ ︸︸ ︷
(P(x ∈ Si) − P(x ∈ Si−1))P (Fi−1 = s |x �∈ Si−1 )

P(Fi−1 = s)

⎞⎟⎟⎟⎠ , (8)

where the probability P (Fi−1 = s |x �∈ Si−1 ) is computed using Equation (7),
where I \ {x} is substituted for I. Said otherwise, we identify P(Fi−1 =
s|x �∈ Si−1) to the probability that the user sees s ideal elements from a cor-
pus where an ideal element x has been removed. The ratio (∗∗) is equal to
P(x ∈ Si ∧ x �∈ Si−1 |Fi−1 = s ), the probability that the user, who has seen
s ideal elements at rank i, has discovered the ideal element x at rank i but
not before. The product

∏
x∈I over all ideal elements is a noisy-or, it com-

bines all the possible causes that lead the user to a newly-ideal element. If
one ideal element x has been seen only after the user consulted rank i, that
is, P(x ∈ Si ∧ x �∈ Si−1 |Fi−1 = s ) = 1, then the product

∏
x∈I is equal to

0, and the probability Pr (Fi > s|Fi−1 = s) that the user saw for the first
time an ideal element at rank i is 1. If for each list element x at rank i the
user’s probability to see for the first time an ideal element is not increased,
then P(x ∈ Si ∧ x �∈ Si−1 |Fi−1 = s ) is equal to 0 for all x . The probability
Pr (Fi > s|Fi−1 = s) thus equals 0. It is between 0 and 1 in other cases.

Equation (5) can now be fully computed using Equations (7), (8), and (6).
This equation provides us the precision at recall r. Interpolation allows us to
compute precision at any arbitrary recall level �. The precision at � for multiple
queries can be then averaged.

4. COMPARISON WITH STATE-OF-THE-ART METRICS IN THE XML DOMAIN

In this section, we compare PRUM with metrics recently proposed for struc-
tured document retrieval. Most new metrics have been proposed for XML,
so we will mainly focus our comparison on this domain. We first describe in

3Generally, most elements have not even been partially seen (P(x ∈ Si) = 0) at low ranks, and

the number of ideal elements seen with a probability 1 tends to augment the number of consulted

ranks.
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Section 4.1 the current metrics and their limitations using a simple example
for illustration. In Section 4.2, we compute precision on two simple examples
for illustrating the computation of PRUM and for comparing the behavior of
the three metrics.

Most XML metrics were developed within the INEX4 initiative. They make
use of a two-dimensional four-graded scale [Kazai et al. 2003] assessment. Its
dimensions are:

Specificity (spe). The extent to which a document component is focused on
the information need;

Exhaustivity (exh). The extent to which the information contained in a doc-
ument component satisfies the information need.

An assessment in the INEX scale is denoted ExSy, where x and y are, re-
spectively, the exhaustivity and specificity levels which may take four values
between 0 (not exhaustive/specific), 1, 2, or 3 (maximal exhaustivity or speci-
ficity). Exhaustivity always increases when going up in the XML hierarchy as
bigger elements may contain more ideal information. Starting from an S3 node
and going up in the tree, specificity usually decreases as bigger elements tend
to contain more irrelevant information.

4.1 Current Metrics

Metrics should be able to handle the specific problems encountered with
semistructured IR. Important issues, as mentioned in the introduction, are
(1) the need to reward near misses, that is, elements in the context of an ideal
element, (2) the ability to deal with overlapping retrieved elements, and (3) the
ability to accommodate best entry points, that is, elements that lead to more
than one ideal element. We analyze different metrics based on their respective
ability to deal with these problems in the following.

First metrics proposed for XML evaluation were variations of recall-
precision. They are denoted GRP for generalized RP and presented first. Metrics
using more sophisticated user models are presented next.

4.1.1 Variations of Recall-Precision Metrics ( GRP and GRP ng). Near
misses can act as entry points leading to one or more ideal elements as illus-
trated in Figure 3. The left part represents an XML document with one ideal
element f. Possible answers to a query for which f is ideal are a sibling (e),
a descendant (b), or the parent (a) of the ideal element, from where the ideal
element can be accessed. In the case of Web retrieval (right side of the Figure),
returning element b or a, for example, can lead the user to f through hyper-
links. It is generally admitted [Kazai et al. 2004] that near misses should be
rewarded but to a lesser extent than exact answers.

The GRP model uses a very simple way to take context into account: it
gives a positive score, lower than for the ideal element, to near misses [Kazai
2003]. The amount of relevance for the near miss is determined by a specific

4Initiative for the Evaluation of XML Retrieval http://inex.is.informatik.uni-duisburg.de/

index.html.
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quantization function. Unfortunately, this way of rewarding near misses leads
to an overpopulation of the recall base [Piwowarski and Gallinari 2003; Kazai
et al. 2004]. The problem is illustrated in Figure 3. Suppose a, b, c, and d are
rewarded, respectively, by 0.75, 0.75, 0.5, and 0.5, because elements a to d now
contribute to the relevance. A system must return all 5 elements (a, b, c, d,
and f) to achieve 100% recall level. On the other hand, a perfect system which
returns the element f achieves only 1/(1+0.75+0.75+0.5+0.5)×100 = 28.6%
recall level.

To restrict overpopulation, we might attempt to prevent the same ideal in-
formation from being counted twice. Gövert et al. [2003] proposed the GRP ng

recall-precision metric where the score of the consulted element is proportional
to the ratio of unseen material in this consulted element, counted in number
of words. Let us use again the XML example in Figure 3 to illustrate this idea.
Suppose a, b, c, and d are rewarded respectively by 2/3, 2/3, 1/3, and 1/3. If
element a is consulted before b, its contribution to recall is 2

3
since no part of

a has been seen previously. On the other hand, if a is consulted after b, the
contribution of a to recall is computed as 2

3
× (1 − 10

100
) = 0.6 because 10/100 of

a has been seen previously with element b. One drawback of this approach is
that recall can be superior to the number of truly ideal elements. If b and then
a are seen, recall amounts to

2

3︸︷︷︸
b reward

+
(

1 − 10

100

)
︸ ︷︷ ︸

10/100 of a has been seen

× 2

3︸︷︷︸
a reward

= 1.27.

Another limitation is the dependence of the recall base on the list order. If a is
consulted before b, the contributions of a and b are 2

3
and 0, respectively, leading

to a total recall of .66, significantly inferior to 1.27. Two systems retrieving the
same elements are subject to achieving dramatically different scores depending
on the element order: recall of a followed by b is different from the recall of b
followed by a. We shall refer to this problem as the recall instability.

GRP and GRPng are simple extensions of recall-precision measures. They
cannot simultaneously accommodate near misses and offer a consistent model.
They also fail to take nonoverlapping near misses into account. In Figure 3, for
example, element e is not rewarded, although it is a near miss.

They cannot handle best entry points [Lalmas and Moutogianni 2000] either.
A BEP is an element that leads to several ideal elements like a Web page
with hyperlinks to several ideal pages or like a section in an XML document
containing several ideal paragraphs. Assume that a section containing the only
two ideal paragraphs for a given query is returned by the search engine. If
only the section is consulted, GRP and GRPng parameters cannot be set to
give a 100% precision and recall which is not consistent. Note that the classic
definition of precision also leads to inconsistencies in this case: retrieving the
section leads to a score superior to 1 because one element is consulted while
two ideal elements are seen.

PRUM metrics handle these problems gracefully with the concept of Lui
elements. Only ideal elements are directly rewarded, but IR systems returning
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a near miss are rewarded indirectly because doing so increases the probability
of finding an ideal element. They will, however, be ranked below those directly
returning the ideal elements. There is neither recall base overpopulation nor
recall instability. For BEP, PRUM handles consistently the cases where more
than one ideal element can be reached from a single consulted one.

4.1.2 Metrics with a Navigating User Model. Generalized recall-precision
metrics proposed so far rely on a basic user model in which, for flat document
collections, the user inspects the ranked elements sequentially in decreasing or-
der of relevance without navigating to proximal elements. This contradicts the
nature of structured corpora in which the context of an element is an important
source of information.

Other measures specific to XML retrieval have been developed. Kazai et al.
[2004] proposed a modification of the cumulated gain criterion [Kekäläinen and
Järvelin 2002] called xCG. We will only discuss the basic xCG measure, but
our comments remain valid for different variations of this metric which were
proposed later. For each rank of the list, xCG computes a gain that depends
on the judgement associated with the element and on the previous element
consulted by the user (see Appendix C.3 for more details).

The xCG metrics manage to overcome GRP limitations while maintaining
a simple definition. Near misses can be taken into account without expanding
the recall base and overlap is also considered. This is clearly an improvement
over the basic PR measures discussed before.

Compared to PRUM, there are two important differences. First, xCG has
been developed specifically for a special case of XML retrieval. For example,
navigation is allowed down and up the XML tree, and near misses, which
are not direct ancestor or descendants, are not considered. Second, there is
no well defined and explicit user model. The implicit user model of xCG is
related in some way to the metric parameters, but this relation is neither for-
mally defined nor explicit. For example, overlap is not rewarded when fixing
the weighting factor α to the specific value of 1. Doing so also limits the flexibil-
ity of the user model. For other values of the weighting factor, the metric may
present small incoherences. As a consequence, xCG extension to other struc-
tured information retrieval paradigms or to more realistic user models would be
problematic.

More sophisticated user models have been defined previously by Quintana
et al. [1993] for Web retrieval and by Dunlop [1997] in the more general context
of IR interfaces used to present results. Both models take into account the user
effort (measured in elapsed time) for accessing relevant information. An inter-
esting extension of the latter work [Vries et al. 2004] proposed the Tolerance To
Irrelevance (T2I) metric, which is based on Cooper’s Expected Search Length
Measure [Cooper 1973]. The core of this proposal is a user model considering
overlap and near misses. The user consults the returned elements until he finds
relevant information or until his tolerance (counted in number of words, e.g.,) to
irrelevant material is reached. In both cases, he proceeds to the next element in
the list. As with PRUM, the T2I model only rewards an ideal element reached
through navigation once. The direct use of Raghavan’s formula for T2I implies
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Table IV. Summary of Metric Properties for XML Retrieval

The first row (precision+recall) indicates which metric supports both dimensions. The second row

states whether the metric relies on an explicit user model. The third and fourth rows indicate

whether the metric handles near misses and overlap. RP is defined in Raghavan et al. [1989], GRP

in Kazai [2003], GRPng in Gövert et al. [2003], XCG in Kazai et al. [2004], T2I in Vries et al.

[2004], and GR in Piwowarski and Gallinari [2003]

PropertyMetric RP GRP GRP ng T2I XCG GR PRUM
Precision and Recall yes yes yes yes (a) yes no yes
Formal derivation yes no no yes no yes yes
from an explicit
user model
Near misses no partial partial yes yes (b) yes yes
Overlap no no partial yes yes (c) yes yes
Graded assessments no yes yes no yes yes no
(a) but not formally exact
(b) only for nodes assessed relevant by judges

(c) with parameter α set to 1

that precision is computed under the assumption that an element leads to at
most one ideal element: this can lead to a precision strictly superior to 1. In
PRUM, one or more ideal elements can be reached from a single rank without
problem. PRUM estimates the number of list elements leading to at least one
previously unseen ideal element. Also, the relevance score of an element drops
from one to zero depending on a preset number of words that precede it (the
user behavior is deterministic while it is stochastic in PRUM), which seems
too strict for our purpose. The T2I user model can be used in our metric by
appropriately setting the navigational probabilities of the PRUM user model;
said otherwise, PRUM includes T2I as a special case.

The PRUM user model was first introduced in Piwowarski and Gallinari
[2003] in the context of the generalized recall (GR) measure5. This metric, how-
ever, lacked one dimension, that is, the precision, and is therefore less expres-
sive than PRUM.

A summary of the different metrics and their properties is given in Table IV.
Metrics like GRP, GRPng, and xCG need graded relevance judgements in order
to express the fact that an element is not ideal but a near miss. In PRUM, this
is handled by the navigation behavior of the user and the specific definition of
seeing an element used in our model. For instance, suppose that an element
has a quantization 1 and its parent 0.75 for GRP; for PRUM, the former would
be ideal (i.e., a system returning this element would be fully rewarded), while
the latter would not be ideal but have a probability of navigation to the ideal
one of 0.75.

4.2 Examples

In this section, we illustrate some of the properties of PRUM through two sim-
ple examples. The first one shows how PRUM solves overlap and near miss
problems, while the second concerns best entry points. In the discussion, we

5Also known as ERR (Expected Ratio of Relevant units).
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Fig. 6. (Left) An XML document with an ideal element (c). The size of an element is shown

between brackets after the element name. All leafs contain 10 words. Other nodes contain node

10-specific words plus the words of their children. For example, a (respectively b, c) contains 60

words (respectively 40, 10). The assessment (INEX scale) is shown in the lower part of the nodes.

On the right, a video with four scenes (a, b, c, f) is depicted. The scene c is an ideal unit for the

user’s query need; one sixth (respectively one fourth) of the users would see c if a (respectively b)

were returned.

also compare PRUM to GRP, GRPng, and xCG, the three metrics discussed
previously.

4.2.1 Example 1. Hierarchical Navigation Within XML Documents. Con-
sider the toy example of Figure 6. This example concerns a single document
with six elements where only c is ideal. The left part of the figure is a tree-like
XML document while the right part is a portion of a video composed of four
scenes. We will compute the scores for the three metrics of two search engines
returning the same elements in different order: c, b, a and a, b, c, respectively.
We expect the first search engine to be scored higher since it returns the unique
ideal element in first position.

Formal definitions of GRP, GRPng, and xCG can be found in Appendix C. The
computation of PRUM requires the specification of the probability of transition
between elements P(x → y). Consider first the tree-like document. In order
to keep the example simple, we restrict the user to moving only up and down
in the XML hierarchy and define heuristically the transition probability as
follows:

P(x → y) =
⎧⎨⎩

length(x)/ length( y) if y contains x
length( y)/ length(x) if x contains y

0 otherwise.

(9)

We set the length of each element to 10 words more than the total length of
included elements. For example, element b contains 40 words, c 10 words, and
the probability of transition from b to c is 10/40 = 0.25.

For the video example, we set the navigation probabilities between a/b
and c so that they match their counterpart in the XML example: one sixth
(respectively one fourth) of the users would browse from a (respectively b) to c.
All results that follows also hold for this example.

The good search engine. The first engine returns the three elements c, b, a,
in this order, presenting the unique ideal element first.
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The GRP metric attributes a recall of 2.5 (2 × 0.75 for a and b, and 1 for c)
to the engine when the whole recall base has been discovered

precision = 2.5

2.5 + 0.25 + (0.25 × 0.75)/(0.75 + 1)
	 0.88.

The precision is thus inferior to 1 even though the ideal element has been seen
first.

Since c is entirely new (10 words), 1 − 10
40

= 3
4

of b are new (30 words) and

1 − 40
60

= 1
3

of a are new (20 words), The score calculated by GRPng is

precision = 10 × 1 + 30 × 3
4

+ 20 × 1
3

10 + 30 + 20
	 0.65

at recall = 1 × 1 + 1 × 3
4

+ 1 × 1
3

1 + 1 + 1
	 0.69

Precision is still less than 1, and recall level is inferior to 100%. This is the effect
of the recall instability. For GRPng, a 100% recall level cannot be achieved, and,
by definition, this metric sets a 0 precision at recall level 1.

When computing the gain of elements b (or a), xCG takes into account the
fact that c was already seen by the user; the gain of b (or a) is 0. The xCG
score is simply the vector (1, 1, 1) where each component corresponds to the
cumulated gain at a given rank. The xCG metric rightly rewards the unique
ideal element.

The PRUM score is evaluated in different steps. The probabilities P(c ∈
S1), P(c ∈ S2), P(c ∈ S3) that element c was seen after the user has consulted
ranks 1, 2, and 3, respectively, are all 1. The next step consists of evaluating the
probabilities P(Fi) that Fi ideal elements have been seen when the user reaches
position i. The user has not seen any ideal element before he starts consulting
the list, and P(F0 = 0) = 1. The first element in the list is the unique ideal
element in the database, and we have P(Fi = 1) = 1 for i > 0. The probability
that the user sees the first ideal element is computed using formula (8):

P(F1 = 1|F0 = 0) = 1 × (1 − 0) × 1

1 × 1
= 1.

For recall r = 1, formula (5) gives:

precision =
∑3

i=1 P(Fi−1 = 0)P (Fi > 0|Fi−1 = 0)∑3
i=1 P(Fi−1 = 0)

= 1.

This is the expected result as the first component consulted is the only ideal
element in the corpus. The user has only to consult one element of the list which
leads to an ideal one.

The bad search engine. This engine returns the same elements in a different
order: the list is now a, b, c. We expect the metrics to score this engine signifi-
cantly lower than the first given that the unique ideal element is in position 3
instead of 1.
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The GRP metric attributes a precision of 0.83 at recall level 1:

precision = 2.5

2.5 + 0.5 + (0 × 1)/(1 + 1)
≈ 0.83.

As expected, we observe a lower score compared with the 88% achieved by
the first engine, but the difference is rather small. For the GRPng metric, the
maximum recall is reached after the first element of the list has been consulted
by the user since the unseen part of b or c is nonexistent (they were seen with
a):

precision =
2
3

× 60 + 2
3

× 0 + 1 × 0

60
≈ 0.67

at recall = 1 × 1 + 1 × 0 + 1 × 0

1 + 1 + 1
≈ 0.33

Precision is the same as in the first scenario. The recall level is significantly
inferior to 1, but more serious is the following inconsistency. The recall level is
significantly different from the 65% score achieved by the good search engine
although exactly the same elements have been seen.

The xCG score is simply the vector (.75, .75+(1−α)× .75, .75+(1−α)×1.75),
where α is a value between 0 and 1 that represents how much frustration a user
is willing to tolerate when accessing redundant elements; a value of 1 reflects
a user who does not tolerate already viewed elements. A value α < 2

3
can lead

to a gain at rank 3 superior to 1; when α < 3
4
, the same can happen at rank 2.

This could be fixed simply by normalizing the scores as is currently done with
descendants of an ideal element. However, the procedure is not straightforward
since an ancestor of an ideal element can contain other ideal elements. Another
possibility is to set α to 1 so that descendants of an already consulted element
are not rewarded at all. This solution was adopted in INEX 2005. This shows
one problem that stems from the fact that the metric is not defined with respect
to a formal and explicit user model.

We now show how PRUM solves these problems. As before, we first compute
the probabilities P(c ∈ S1), P(c ∈ S2), and P(c ∈ S3) that element c was seen
after the user consulted rank 1, 2, and 3, respectively. Following Equation (9),
the probability that the user browses from a (respectively, b and c) to c is
10
60

(respectively, 10
40

and 1). Consequently P(c ∈ S1) = 10
60

, P(c ∈ S2) = 1 − (1 −
10
60

)(1− 10
40

) = 3
8

and P (c ∈ S3) = 1−(1− 10
60

)(1− 10
40

)(1−1) = 1. The probability that
the user sees no ideal element before he starts and until position 2 is computed
with formula (7). We have P(F0 = 0) = 1, P(F1 = 0) = 5

6
and P(F2 = 0) = 5

8
.

The probability that the user sees an ideal element knowing he has not seen
one before is formula (8):

P(F1 = 1|F0 = 0) = 1 × (
1
6

− 0
) × 1

1 × 1
= 1

6

P(F2 = 1|F1 = 0) = 1 × (
3
8

− 1
6

) × 5
6

5
6

× 5
6

= 1

4
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Fig. 7. A collection composed of 100 elements; only three of them are shown in the graph. There

are two ideal elements (b and c). The navigation probabilities are shown next to the graph edges.

In the case of XML IR, we suppose that the three elements are judged E3S3.

P(F3 = 1|F2 = 0) = 1 × (
1 − 3

8

) × 5
8

5
8

× 5
8

= 1

This leads to a precision of 41% at r = 1:

precision =
∑3

i=1 P(Fi−1 = 0)P (Fi > 0|Fi−1 = 0)∑3
i=1 P(Fi−1 = 0)

= 1 × 1
6

+ 5
6

× 1
4

+ 5
8

× 1

1 + 5
6

+ 5
8

= 0.41

As expected, the bad engine score is significantly lower than the 100% achieved
by the good one. It is also slightly superior to a strict version of precision-recall
(33%) because it takes into account the possibility that the user navigates to
the ideal element from a or b.

4.2.2 Example 2. Best Entry Point. In this Section, we illustrate the ability
of the PRUM metric to properly reward best entry points. Figure 7 represents
a collection where two elements (b and c) are the only ideal units. A third
element, a, acts as an entry point; all the users would eventually see b and/or c
if the system retrieves a. We will compare PRUM with the other metrics when
the retrieved lists is a (the BEP is ranked before the ideal units). We restrict
b and c to be the only children of element a. We also suppose that b and c are
fully exhaustive and specific answers to the query, that is, they score E3S3 on
the INEX assessment scale. Consequently, element a is also E3S3 as it does not
contain any irrelevant material (S3) and as it contains an exhaustive answer
to the query (E3). The quantizations values of a, b, and c for GRP, GRPng, and
xCG are thus 1 (see Appendix C).

The retrieved list does not contain all the elements of the database that lead
the user to see the two ideal elements. For GRP, it is necessary to know the
number of elements of the database. It is arbitrarily set to 100 here. As in the
previous section, we are interested in the precision at a recall level of 100%
which is reached here for a recall value of 2.

When the search engine returns only the best entry point (a), the unranked
part of the list is then composed of 99 elements containing two ideal units.

For the GRP metric, the maximum achievable recall value is 3. This re-
call value is achieved only when the user consults the unranked list which is

ACM Transactions on Information Systems, Vol. 25, No. 1, Article 1, Publication date: February 2007.



26 • B. Piwowarski et al.

composed of 2 ideal and 97 irrelevant units.

precision = 3

3 + 0 + (97 × 2)/(2 + 1)
≈ 0.044.

Precision is low because the user has to consult the whole unranked list (none
of the ideal elements have been retrieved in the ranked part).

A recall level of 1 cannot be achieved by GRPng. The score calculated by
GRPng is

precision = 1 at recall = 1

3
.

Since the gain of a is 1, the xCG score is a vector reduced to a single com-
ponent, 1. However, this is not the best achievable result since an ideal run
for xCG would be composed of both elements b and c. The system achieves
only a normalized gain of 0.5. From a gain perspective, the system managed to
retrieve only one ideal unit.

The PRUM score is evaluated as follows. First, the probability that the user
sees element b or c is 1 at rank 1. Consequently, at rank 1, the probability that
the user sees 0, 1, or 2 ideal units is respectively 0, 0, and 1: As in the previous
example, the user did not see any ideal element before he start consulting the
list, and P(F0 = 0) = 1. The probability that the user sees for the first time an
ideal unit at rank 1 is computed using formula (8):

P(F1 > 0|F0 = 0) = 1 −
∏

x∈{a,b}

(
1 −

(
P

(
Si

x

) − P
(
Si−1

x

))
P

(
Fi−1 = s

∣∣¬Si−1
x

)
P(Fi−1 = s)

)

= 1 −
(

1 − (1 − 0) × 1

1

) (
1 − (1 − 0) × 1

1

)
= 1.

We can now compute PRUM (for recall r = 2) with formula (5):

precision = P(F0 = 0)P (F1 > 0|F0 = 0) + ∑1
s=0 P(F1 = s) × (2 − s)

P(F0 = 0) + ∑1
s=0 P(F1 = s) × (2 − s) ×

(
1 + 99−(2−s)

2−s+1

) .

= 1 + 0

1 + 0
= 1

This is the expected result as a is a BEP for both b and c.

In the first example, PRUM is the only metric that is consistent. The two met-
rics GRP and GRPng suffer from the varying recall base problems mentioned
in the discussion section. For xCG, the parameter α may lead to inconsistent
results. The second example shows that PRUM is able to properly handle the
evaluation of a run containing BEP.

5. DISCUSSION

Most metrics used to compare the performance of structured document search
engines rely—sometimes implicitly—on a simplistic model of user behavior.
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The user is restricted to consulting exclusively with the elements of the list
returned by the engine. This user model is not adapted to recent structured IR
tasks like XML, Web or video retrieval. In particular, it does not consider this
user ability to navigate between elements, using the list as entry points to the
information. Beyond being inadequate, this may also lead to metrics that score
search engines inconsistently.

We presented in this work an extension of the probabilistic measure of
precision-recall which explicitly models the navigational behavior of a user.
The precision-recall with user modeling (PRUM) metric is designed for new IR
paradigms like XML, Web, or video. This metric has sound theoretical founda-
tions and is consistent with the assumptions of these new structured IR tasks.

PRUM is a generalization of commonly accepted metrics. It reduces to stan-
dard recall-precision if browsing between elements is not allowed. It is able
to formally describe a whole family of user models and makes explicit the dif-
ferent user behavior assumptions. It allows sophisticated user behaviors even
though we restricted ourselves to simple cases in the examples presented here.
For instance, the browsing probability P(x → y) can be made dependent on
the position of x in the search engine list, and hence on previous list elements
consulted by the user. In the context of XML retrieval, it can accommodate a
user who would be unwilling to browse again in a document he has already
consulted in the context of a previous list element. Other models can be defined
to match the findings of user experimentation.

Future work on the PRUM metric is experimental. We intend to collect data
on XML IR user behavior and derive the corresponding PRUM parameter val-
ues. We will also quantify the relation between the measures given by the
PRUM metric and the satisfaction of the user measured through subjective (e.g.,
questionnaires) and objective (ideal material found) methods.

The metric is implemented in the EvalJ project which aims at providing a set
of proposed metrics for XML IR. More information can be found at this URL:
http://evalj.sourceforge.net.

APPENDIXES

A. DETAILS OF PRUM COMPUTATION

In this section, we show how PRUM can be derived, based on the user model
defined in Section 2. Appendices A.3 and A.4 show how Pr (Lui|Cs) can be ex-
pressed in the form

(a)︷ ︸︸ ︷
r−1∑
s=0

o∑
i=1

Pr (Fi−1 = s)Pr (Fi > s|Fi−1 = s) +

(b)︷ ︸︸ ︷
r−1∑
s=0

Pr (Fo = s)(r − s)

r−1∑
s=0

o∑
i=1

Pr (Fi−1 = s)︸ ︷︷ ︸
(c)

+
r−1∑
s=0

Pr (Fo = s)(r − s) ×
(

1 + u − (|I| − s)

|I| − s + 1

)
︸ ︷︷ ︸

(d )
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Appendices A.1 and A.2 detail how the quantities Pr (Fi = s) and Pr (Fi >

s|Fi−1 = s) appearing in the different terms of the preceding equation can
be computed.

A.1 Probability of Seeing a Given Number of Ideal Units

For different terms in Equation (5), one needs to compute the probability of the
event Fi = s that a user sees s ideal elements after he has consulted the i first
ranks of a totally ordered list. In PRUM, this is equivalent to stating that the
set of ideal elements seen by the user contains s elements:

|{x|x ∈ Si ∧ x ∈ I}| = s ≡ Fi = s.

Formally, the event Fi = s is true if and only if there exists a subset A ⊆ I

of cardinality s such that all elements of A have been seen by the user and no
other ideal element has been seen at rank i. Fi = s is true if and only if

∀x ∈ I we have x ∈ A ⇔ x ∈ Si.

The latter event can be written:(∧
x∈A

x ∈ Si

)
∧

( ∧
x∈I\A

x �∈ Si

)
. (10)

The different possibilities for a user to see exactly s ideal elements correspond
to a disjunction over all the possible subsets A of I of cardinality s:

Fi = s ≡
∨
A⊆I

|A|=s

((∧
x∈A

x ∈ Si

)
∧

( ∧
x∈I\A

x �∈ Si

))
.

The composite events (10) inside the disjunction being mutually exclusive,
the probability of the disjunction can be rewritten as the sum over all the subsets
A ⊆ I of cardinality s.

Using hypotheses (2.1) and (2.2) that imply that events x ∈ Si are mutually
independent, we easily obtain the following expression:

Pr (Fi = s) =
∑
A⊆I

|A|=s

∏
x∈A

Pr (x ∈ Si)
∏

x∈I\A

Pr (x �∈ Si), (11)

where the sum is over all the subsets A of X which contain s elements
and where Pr (x ∈ Si) is given by (1). Equation (11) can be computed in O(m2),
where m is the number of elements x for which 1 > Pr (x ∈ Si) > 0. Note that
a normal approximation—theorem of Lindenberg [Saporta 1990]—can be used
for large values of m:

Pr (Fi = s) ≈ Pr (s − 0.5 < F̃i ≤ s + 0.5),

where F̃i follows a normal distribution of mean 1
|X |

∑
x∈X Pr (x ∈ Si) and variance

1
|X |

∑
x∈X Pr (x ∈ Si)(1 − Pr (x ∈ Si)). Using a sample of 10,000 random trials,

we found experimentally that the maximum absolute difference between the
normal approximation and the exact distribution was on average 0.01 for m =
10.
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A.2 Probability of Seeing an Ideal Element for the First Time

For term (a) in Equation (5), one needs to compute the probability Pr (Fi >

s|Fi−1 = s) that the i th element leads to a previously unseen ideal element,
knowing that s ideal elements have already been seen by the user after he
consulted the list up to rank i−1. This is equivalent to finding at least one ideal
element at position i that was not seen at position i −1. Using hypothesis (2.3),
we have

Pr (Fi > s|Fi−1 = s) = 1 −
∏
x∈I

(1 − Pr (x ∈ Si ∧ x �∈ Si−1|Fi−1 = s)),

where the right term can be decomposed using the Bayes rule and the fact that
Pr (Fi−1 = s|x �∈ Si−1 ∧ x ∈ Si) = Pr (Fi−1 = s|x �∈ Si−1):

Pr (x ∈ Si ∧ x �∈ Si−1|Fi−1 = s) = Pr (x ∈ Si ∧ x �∈ Si−1)Pr (Fi−1 = s|x �∈ Si−1)

Pr (Fi−1 = s)
.

Once an element has been seen at a given rank, it remains seen for all the
following ranks: formally, x ∈ Si−1 =⇒ x ∈ Si. This implies that x ∈ Si ∧ x ∈
Si−1 ≡ x ∈ Si−1 . As

Pr (x ∈ Si) = Pr (x ∈ Si ∧ x �∈ Si−1) + Pr (x ∈ Si ∧ x ∈ Si−1),

we have Pr (x ∈ Si ∧ x �∈ Si−1) = Pr (x ∈ Si) − Pr (x ∈ Si ∧ x ∈ Si−1) = Pr (x ∈
Si) − Pr (x ∈ Si−1). Then,

Pr (Fi > s|Fi−1 = s)

= 1 −
∏
x∈I

(
1 − (Pr (x ∈ Si) − Pr (x ∈ Si−1))Pr (Fi−1 = s |x �∈ Si−1 )

Pr (Fi−1 = s)

)
, (12)

where Pr (Fi−1 = s |x �∈ Si−1 ) can be evaluated starting with Equation (11) and
using the Bayes rule:

Pr (Fi−1 = s |x �∈ Si−1 ) = 1

Pr (x �∈ Si−1)

∑
A⊆I\{x}
|A|=s

∏
y∈A

Pr ( y ∈ Si−1)
∏

y∈I\A

Pr ( y �∈ Si−1)

=
∑

A⊆I\{x}
|A|=s

∏
y∈A

Pr ( y ∈ Si−1)
∏
y∈I\A
y �=x

Pr ( y �∈ Si−1)

This is formally identical to Equation (11) in Appendix A.1 and is equivalent to
computing the probability Pr (Fi = s) of finding s ideal elements until position
i, considering that element x does not belong to the database anymore.

Using this result we are now able to compute term (a) in Equation (5).

A.3 Probability of Being Consulted

We will now show how the denominator of Equation (4) can be expanded into
the one of Equation (5). Consider an element at random in the list: what is the
probability Pr (Cs) that this element was consulted by the user while searching
for r ideal elements?
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We separate the cases where the element is in the ranked and in the un-
ranked parts of the list:

Pr (Cs) = Pr (Cs ∧ Rk) + Pr (Cs ∧ ¬Rk).

Pr (Cs∧ Rk) will be computed with our user model. For Pr (Cs∧¬Rk), we have to
switch back to the classic (nonnavigating) user model as explained in Section 2.

Let us define the event AtRanki that corresponds to “The element under
consideration is at position i”. The set { AtRanki}i=1..o+u forms a partition of the
probabilistic universe. As there is no reason to prefer an element to another,
it follows a uniform distribution with probability Pr ( AtRanki) = 1

o+u . We then
have.

Pr (Cs ∧ Rk) =
o∑

i=1

Pr ( AtRanki)Pr (Cs| AtRanki). (13)

An element at position i is consulted if and only if the user did not find previ-
ously (at rank i − 1) the r elements he requires. This implies the equivalence
Pr (Cs| AtRanki) = Pr (Fi−1 < r). Since P( AtRanki) = 1

o+u , we can express
Pr (Cs, Rk) in terms of the probability Pr (Fi−1 = s) described in Appendix A.1:

Pr (Cs ∧ Rk) = 1
o+u

o∑
i=1

∑
s<r

Pr (Fi−1 = s). (14)

We now deal with the nonranked part. Cooper [1968] shows how to compute
the expected number of elements a user has to consult if he wants to find a
given number of ideal and unseen elements in an unranked set where the ratio
of ideal to nonideal elements is known. As the ratio depends on the value of Fo,
which is the number of ideal elements the user has found in the ranked list,
we have to consider all the possible values of Fo. We decompose Pr (Cs, ¬Rk) as
follows:

Pr (Cs ∧ ¬Rk) =
r−1∑
s=0

Pr (Fo = s) Pr (Cs ∧ ¬Rk|Fo = s)︸ ︷︷ ︸
(∗)

. (15)

The term (∗) can be decomposed into

u∑
i=1

Pr (Cs ∧ ¬Rk|Fo = s ∧ N = i + o)︸ ︷︷ ︸
(∗∗)

Pr (N = i + o|Fo = s),

where N is the number of elements consulted by the user in the list. The term
(**) in this equation corresponds to the probability that an element is in the
nonranked part and consulted by the user, knowing that he has consulted i + o
elements. Among these i + o elements, only i are in the nonranked part.
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Consequently, term (**) equals i
o+u and Equation (15) can be rewritten as:

Pr (Cs ∧ ¬Rk) =
r−1∑
s=0

Pr (Fo = s)
u∑

i=1

i
o + u

Pr (N − o = i|Fo = s)

=
r−1∑
s=0

Pr (Fo = s)
1

o + u
E [N − o|Fo = s, R = r]

=
r−1∑
s=0

Pr (Fo = s)
1

o + u
(r − s) ×

⎛⎜⎜⎝1 + u − (t − s)

t − s + 1︸ ︷︷ ︸
a

⎞⎟⎟⎠ , (16)

where E is the expectation. The proof of the last line can be found in Cooper
[1968] and is intuitive: (a) is the expected number of nonideal elements which
have to be consulted before finding an ideal one. A user wanting r − s ideal
elements will thus have to consult (r − s) × (a) irrelevant elements and r − s
ideal ones.

Equations (14) and (16) correspond, respectively, to the terms (c) and (d) in
Equation (5). Both terms can be computed using the expression for Pr (Fi = s)
obtained in Appendix A.1.

A.4 Probability of an Element Being Ideal and Consulted

To transform the numerator Pr (Lui ∧ Cs) of Equation (4) into the numerator of
Equation (5), we again separate between ranked and unranked lists:

Pr (Cs ∧ Lui) = Pr (Cs ∧ Lui ∧ Rk) + Pr (Cs ∧ Lui ∧ ¬Rk).

As before, we will decompose the event Cs ∧ Lui ∧ Rk using the set of disjoint
events AtRanki. We use the following observations: 1) the user consults the ith
element if and only if he has found previously strictly less than r ideal elements,
2) the ith list element leads to a newly-ideal element (Lui) if and only if the
number of ideal elements seen by the user increases after he has consulted the
ith element, that is, if Fi > Fi−1. This leads to the result for the ranked part:

Pr (Lui ∧ Cs ∧ Rk) =
o∑

i=1

Pr (Fi−1 < r ∧ Fi > Fi−1| AtRanki)Pr ( AtRanki)

= 1

o + u

o∑
i=1

Pr (Fi−1 < r ∧ Fi > Fi−1| AtRanki)

= 1

o + u

o∑
i=1

r−1∑
s=0

Pr (Fi−1 = s)Pr (Fi > s|Fi−1 = s) (17)

For the nonranked part, we consider all the possible numbers of ideal ele-
ments seen by the user after he has consulted the ranked part (Fo).

Pr (Lui ∧ Cs ∧ ¬Rk) =
r−1∑
s=0

Pr (Fo = s)Pr (Rel ∧ Cs ∧ ¬Rk|Fo = s).
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We use again the classic nonbrowsing user model. Since there is no navigation,
and since s ideal elements were found in the ranked list, the user needs to find
r − s ideal elements in the unranked list. The probability that he randomly
picks an element which is ideal, consulted, and not in the ranked part is then:

Pr (Lui ∧ Cs ∧ ¬Rk|Fo = s) = r − s
o + u

. (18)

The final result is the written:

Pr (Lui ∧ Cs ∧ ¬Rk) =
r−1∑
s=0

Pr (Fo = s)
r − s
o + u

.

Equations (17) and (18) show the equivalence between the numerators of
Equations (4) and (5). As before, the different terms can be computed using
directly the results from Appendices A.1 and A.2.

B. PRUM AND STANDARD PRECISION-RECALL

Precision-recall is a particular case of the PRUM metric with no navigation, that
is, when the standard user model is used. The absence of navigation implies
that P (x → y) is 1 if and only if x = y and 0 otherwise. The user sees the
element if and only if it is in the part of the list he consults, that is, x ∈ Si if
and only if × is within the i first elements consulted by the user, that, is x ∈ Li .
We can then write that the user has found s ideal elements if and only if he has
examined exactly s ideal elements:

Pr (Fi = s) = 1 ⇔ |Li ∩ I| = s,

where Li ∩ I is the set of ideal elements the user has seen directly in the
returned list. In the following, we denote ei the number of ideal elements seen
when the user has examined all elements from position 1 to i; ei verifies

Pr (Fi = ei) = 1

We can easily state that ei ≥ e j for i > j . We also denote lr the minimum
number of ranks the user has to consult before seeing r ideal elements:

lr = min{i|P (Fi = r) = 1}.
.

We specialize for the classic user model the four Equations (14), (16), (17),
and (18) composing the PRUM formula in Equation (5):

Equation (14). The equation can easily be rewritten

o−1∑
i=0

Pr (Fi < r).

If the user wants to see s ideal elements, then we have to consider two cases:

(1) The ranked part contains at least r ideal units (eo ≥ r). The first rank for
which P(Fi < r) = 0 is by definition lr, the rank at which the user finds its
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rth ideal element. For all the ranks between 0 and lr − 1, the probability
P(Fi < r) equals to 1. The sum is thus equal to lr.

(2) The ranked part contains strictly less than r ideal elements, and the user
has to consult all the elements (o) in the ranked part to be satisfied: P(Fi <

r) = 1 for 0 ≤ i ≤ o − 1 and the sum equals o.

Formally, the two cases are summarized as:

o∑
i=1

r−1∑
s=0

Pr (Fi−1 = s) =
{

lr if eo ≥ r
o otherwise.

Equation (16). As the user has found eo ideal elements at the end of the
ranked list, he doesn’t have to consult the unranked list if his information need
is satisfied: We have Pr (Cs, ¬Rk) = 0 if eo ≥ r. Otherwise, using Equation (16),
we equal Pr (Cs, ¬Rk) to

r−1∑
s=0

Pr (Fo = s)(r − s)

(
1 + u − (t − s)

t − s + 1

)
= (r − eo)

(
1 + u − (t − eo)

t − eo + 1

)
,

where we used the fact that Pr (Fo = s) = 1 ⇔ s = eo.

Equation (17). We need to evaluate
∑o

i=1

∑r−1
s=0 Pr (Fi−1 = s)Pr (Fi > s|Fi−1 =

s) or equivalently

o∑
i=1

r−1∑
s=0

Pr (Fi > s ∧ Fi−1 = s).

We know that Fi−1 = s is true if and only if s = ei−1, hence we can restrict
the second summation—the number of ideal elements within the o − 1 first
elements of the ranked part cannot exceed eo−1:

o∑
i=1

min(r−1,eo−1)∑
s=0

Pr (Fi > s ∧ Fi−1 = s)

as Pr (Fi−1 = s) = 0 if s > eo−1 and i ≤ o (this is a consequence of the fact
that ei−1 ≤ eo−1). Let us consider the event Fi−1 = s first. It is true only if
s = ei−1 which, in turn, can happen only if ei−1 ≤ r − 1 in the summation (the
other requirement is that ei−1 ≤ eo−1 which is always true). The last condition
is equivalent to i ≤ lr as lr is the first rank for which ei = r, and hence the
previous equation can be rewritten:

min(lr ,o)∑
i=1

Pr (Fi > ei−1).

If the user consults the list up to the rank lr , then he consults r ideal ele-
ments, that is, P(Fi > ei−1) equals 1 exactly r times and 0 in the other cases.
Otherwise, he sees only eo ideal elements. Summarizing, we have:

o∑
i=1

r−1∑
s=0

Pr (Fi−1 = s)Pr (Fi > s|Fi−1 = s) =
{

r if eo ≥ r
eo otherwise.
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Equation (18). If the ranked list contains less than r ideal elements, the
user will require r − eo ideal elements from the nonranked part:

r−1∑
s=0

Pr (Fo = s)(r − s) =
{

0 if eo ≥ r
r − eo otherwise

as P(Fo = s) = 1 ⇔ s = eo.

Conclusion. Putting all together, we have

Pr (Lui|Cs) =
⎧⎨⎩

r
lr

if eo ≥ r
r

r+(o−eo)+(r−eo)
(

u−(t−eo )
t−eo+1

) otherwise.

When the list is composed of a totally ordered set of elements followed by
a totally unordered set of elements and for r ∈ N, Pr (Lui|Cs) is identical to
Raghavan’s formula (19) of Section C.1. To see why, we consider the same two
cases:

—if eo ≥ r, r + j (number of elements consulted by the user searching for r
elements) corresponds to the definition of lr;

—if eo < r, then j (number of non ideal elements consulted by the user the
position before he stops) can be identified to o − eo (number of elements
in the ranked part); the number i (resp. k) of nonideal (respectively ideal)
elements consulted by the user in the last rank can be identified to u − (t −
eo) (respectively t − eo).

C. FORMAL DEFINITIONS OF OTHER XML IR METRICS

C.1 GRP

The formal definition of GRP is

GRP = r
r + j + (i × s)/(k + 1)

, (19)

where r is the number of ideal elements the user requires; j the number of
nonideal elements consulted by the user one rank6 before he stops; i (respec-
tively, k) is the number of nonideal (respectively, ideal) elements at the last
rank consulted by the user; s is the number of ideal elements the user wants to
see at the last rank. To compute GRP in the context of INEX experiments, we
need to map the ExSy assessment scale defined in Section 4.1 to a measure of
element relevance. The generalized quantization method of INEX, for example,
rewards some near misses that are either ancestors or descendants of an ideal

6For Raghavan, a rank can contain more than one document/element.

ACM Transactions on Information Systems, Vol. 25, No. 1, Article 1, Publication date: February 2007.



Precision Recall with User Modeling • 35

element.

q generalized(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if ax = E3S3

0.75 if ax ∈ { E2S3, E3S2, E3S1}
0.5 if ax ∈ { E1S3, E2S2, E2S1},
0.25 if ax ∈ { E1S1, E1S2}
0 if ax = E0S0

where ax is the assessment of element x. As elements relevance is potentially
between 0 and 1, we need to precisely define how the different values defined
by Raghavan are computed with GRP. Let fi be the number of ideal elements
in the list up to rank i (included). It is defined as

fk =
∑

x before or at rank k

q(x),

where q is a given quantization. Let lr be the rank where the user finds its rth
ideal element ( f lr−1 < r and f lr ≥ r); Then i, j and k are defined as:

i =
∑

x at rank lr

1 − q(x)

j =
∑

x before rank lr

1 − q(x)

k =
∑

x at rank lr

q(x)

C.2 GRPng

GRPng takes into account overlap and is defined as:

recall =
∑k

i=1 q(exh(xi)) × unseen length(xi )
length(xi )∑

q(exh(xi))

precision =
∑

i q(spec(xi)) × unseen length(xi)∑
i unseen length(xi)

,

where exh and spec, respectively, returns the exhaustivity and the specificity of
an element and where xi is the ith element of the list returned by the IR system.
The function q is used to map the 0–3 assessment scale to the unit interval:

q(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if x = 3

2/3 if x = 2

1/3 if x = 1

0 if x = 0,

where x is either an exhaustivity or a specificity value.
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C.3 xCG

The definition of xCG at rank n is as follows:

xCG(n) =
n∑

k=1

rv(xk),

where xk is the kth element of the list consulted by the user. The relevance
value, rv, is defined by different formulas, depending on whether ancestors
and/or descendants of the element are ranked higher in the retrieved list:

rv(x)=

⎧⎪⎨⎪⎩
(1 − α) q(x) if an ancestor of x has been seen

α
∑

y child of x

rv( y) × size( y)
size(x)

+ (1 − α) q(x) if only a descendant of has been seen

q(x) otherwise (no overlap)

where q(x) is a quantization of the assessment of element x, and α is a coef-
ficient between 0 and 1 which is set manually. α represents how much frus-
tration a user is willing to tolerate when accessing redundant components or
component-parts. In this article, we used the generalized quantization defined
in Appendix C.1. In order to prevent rewarding a set of descendant elements
more than their ideal ancestor, the following constraint is used for any ideal
element y ∑

x∈S

rv(x) ≤ rv( y),

where S is the set of elements both retrieved and descendant of y .
When α is set to 1, a descendant of an element ranked higher in the list is

not rewarded at all. When set to any other value, overlap is rewarded with an
amount controlled by α.
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