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Abstract

Even the best information retrieval model cannot always identify the
most useful answers to a user query. This is in particular the case with web
search systems, where it is known that users tend to minimise their e�ort
to access relevant information. It is, however, believed that the interac-
tion between users and a retrieval system, such as a web search engine,
can be exploited to provide better answers to users. Interactive Informa-
tion Retrieval (IR) systems, in which users access information through a
series of interactions with the search system, are concerned with building
models for IR, where interaction plays a central role. There are many pos-
sible interactions between a user and a search system, ranging from query
(re)formulation to relevance feedback. However, capturing them within
a single framework is di�cult and previously proposed approaches have
mostly focused on relevance feedback. In this paper, we propose a general
framework for interactive IR that is able to capture the full interaction
process in a principled way. Our approach relies upon a generalisation
of the probability framework of quantum physics, whose strong geometric
component can be a key towards a successful interactive IR model.

1 INTRODUCTION

In less than twenty years, search engines on the Web have revolutionised the way
people search for information. The speed with which one can obtain an answer
to a keyword-based query on the Web is fostering interaction between search
engines and their users. Helping users to reach relevant material faster will most
likely make use of such rich interaction. Another key to future search systems
is the context that further de�nes the search, whether it be external (e.g. time
of the day, location) or internal (e.g. the interests of the user).

Putting aside the problem of evaluating such contextual and interactive
search (see [10] for a discussion on this topic), building models able to explicitly
take into account both is of importance, especially since Information Retrieval
(IR) models seem to have reached maturity and there is an obvious need to go
beyond current state-of-the-art [13].

1

ar
X

iv
:0

90
6.

40
26

v2
  [

cs
.I

R
] 

 2
3 

Ju
n 

20
09



There are many reasons why we cannot assume that users will provide
enough information to state an unambiguous Information Need (IN), such as a
TREC topic description. First, users do not always know how to express their
IN and they sometimes have only a vague knowledge of what they are look-
ing for. Second, users knowledge and interests might evolve during the search,
thereby modifying their IN. Therefore, it is important that implicit contextual
and interaction �information� become integrated directly into IR models and
experiments [6].

Beside standard relevance feedback models like the Rocchio algorithm [11] or
the Okapi model [15], some recent works have attempted to capture context [8]
or interaction [12]. However, there is not yet a principled framework that com-
bines both, and that, equally importantly, tries to capture the di�erent forms of
possible interactions, namely, query (re)formulation, clicks, navigation. Those
tasks are all performed frequently in web searches.

In this paper, we present a framework for interactive and contextual IR. We
view search as a process with two di�erent dynamics: (P1) The system tries
to capture the user IN while (P2) the user cognitive state, and hence the user
IN, is evolving and changing [19]. While the former could be modeled by stan-
dard probabilistic models, we claim that the latter can be better modeled by
the generalisation of probability theory that has been developed in quantum
physics (Section 4.3). Moreover, the strong geometric component of the quan-
tum probability framework is particularly important since standard IR models
rely on vector spaces and on (some variants of) the cosine similarity [14]. We
show how the quantum formalism generalises these latter models (Section 4.2).
In particular, we believe that one strength of the geometric models in IR is that
they are intuitive. Adding a probabilistic view on this geometry opens the door
for new and potentially more powerful IR models.

Our contribution is to describe how the quantum probability formalism could
be used to build an interactive IR framework, �rst motivating the framework in
Section 3 and then describing it more in details in Section 4. We shortly discuss
how a working model could be built in Section 4.3.1. Finally, we detail a direct
application of our framework as a principled generalisation of the Rocchio's
algorithm in Section 4.3.2.

2 Related works

Interactive IR has been actively studied by the Information Science commu-
nity [6], and it has been recognised that there is still little progress regarding
the development, implementation and validation of a model for interactive IR.
In particular, a model that allows for the evolution of the user and the system
states is yet to be developed.

An aspect of interactive IR that has been studied for a long time now is
relevance feedback, where the information about the relevance of documents is
exploited in order to propose a new ordering of the documents. One of the most
well-known algorithm is the Rocchio algorithm [11] where the query represen-
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tation in a term vector space is modi�ed through user interaction. Each time
the user deems a document relevant, the query representation drifts slightly
toward the relevant document representation. Within a more principled prob-
abilistic framework, the Okapi model can straightforwardly integrate this kind
of information into the statistics used to estimate the model probabilities [15].
In contrast to Rocchio, with Okapi the last feedback has as much importance
as the �rst ones, which is not a good property for interactive IR models.

One limitation of these two IR models is that they rely on explicit relevance
feedback, which might not be available or precise enough [7]. Fortunately, it is
possible to adapt these approaches when feedback is implicit. Shen et al. [12]
uses a term vector space representation of a user. The vector is updated when
the user clicks on search result links, based on the summaries of the docu-
ments (and not on the content of the documents). However, the update still
relies on the Rocchio algorithm which lacks a principled motivation. In this
paper, we show how our framework can extend Rocchio's algorithm, providing
a principled way to model the IN drift.

More general and holistic models have been proposed to build an interactive
retrieval system (e.g. Fuhr [4] and Shen et al. [12]) that rely on a decision-
theoretic framework to determine what is the best next action the system should
perform, i.e. what documents should be presented to the user. In such ap-
proaches, decisions are made based on the relevance of documents when consid-
ering past interactions. In this paper, we focus on the latter problem and do
not discuss how to select the best next action the system has to perform.

Finally, some works have already explored the use of the quantum theory
framework in IR. Firstly, the proposition of using quantum theory to model IR
processes and the interpretation of (among others) the standard vector model
within the quantum probability formalism have been detailed in [14]. Following,
some works have tried to exploit the formalism, from a very abstract and generic
level [2] to the formalisation of existing IR models [21]. Another work looked
at how to represent documents in a space di�erent from the standard term
space [5]. Our contribution with respect to these works is to de�ne a new space,
the IN space, and to clearly map di�erent aspects of user-system interaction to
operations within this space (Section 3). In our representation, we also make use
of the distinction between mixtures and superposition, two related but di�erent
concepts in quantum theory (Section 4.2), which proves to be useful in our
representation.

The most related work in that �eld is that of Melucci's [8], which computes
the probability of having a given context Prd(C), where Prd is the probability
distribution generated by the document vector d, and the subspace C is equalled
to the context and is built through user interaction. More speci�cally, given a set
of documents deemed relevant, either using user feedback or pseudo-relevance
feedback, one can compute a subspace C corresponding to the principal com-
ponents of a subspace spanned by those documents. A document vector fully
included in this space will be fully relevant (probability of 1), an orthogonal
one will be fully irrelevant (zero probability). Melucci's approach is dual to
ours, in the sense that instead of representing users in an IN space, he considers

3



documents in a contextual space. Our approach, which relies on an IN space,
facilitates the possibility of using the di�erent quantum evolution mechanisms
to model the interaction between the user and the retrieval system.

In this paper, we explain how our formalism can exploit implicit (i.e. clicks)
and explicit feedback, like relevance judgements or query reformulation. Other
forms of interaction like e.g. going back to the retrieval list, exploration of the
result list, etc. could also be captured by our formalism using the same represent
as for e.g. query (re)formulation, but we do not deal with those in this paper.
To the best of our knowledge, there is no proper theoretical framework that
allows to capture this di�erent feedback information in a principled way and
within a uniform framework.

3 An Information Need Space

We build upon the work described in [9] where a high level description of the
framework was �rst given. Our working hypothesis is that a pure, in the sense
that we know exactly what the user is looking for, user IN can be represented
as a system in quantum physics, i.e. as a unit vector in a Hilbert space1, and
that this state evolves while the user is interacting with the system.

According to the quantum probability formalism, this (IN) vector generates
a probability distribution over the di�erent subspaces of the Hilbert space. We
make the hypothesis that among other possible uses, such subspaces can be
related to the relevance of documents, therefore enabling the computation of a
relevance score for a document, and to user interactions (like typing a query or
clicking on a document), making it possible to exploit them.

From a geometric perspective, using subspaces to describe �regions� of INs
has been (sometimes implicitly) studied and motivated in some works relying
on a vector space representation. First, Wang et al. [16] studied the problem
of negative feedback, �nding that this could be exploited by describing the
IN by a set of vectors (instead of one as in Rocchio's algorithm). Second,
Widdows [17] has shown that term negation in a query was better modelled
with orthogonality, which implicitly implies the use of subspaces to represent
negations of INs. Finally, Zuccon [22] has shown that the cluster hypothesis
still holds when representing documents as subspaces.

Using those IN �regions�, the search process would be modelled as follows.
At the very beginning of the search process, the user IN is underspeci�ed and
is a mixture of all possible pure INs. That is, without any information about
the user, we can only know that the user is in one of all the possible IN states
with a probability that depends e.g. on how popular this IN is.

We believe that using an IN space can model interactive IR since users change
their point of view during a search, and relevance, contrarily to topicality, is
expected to evolve within a search session [19]. More speci�cally, we can identify
two di�erent types of dynamics within the search process: (P1) The IN becomes

1In brief, an inner product vector space de�ned over the complex �eld, see [14] for a formal
de�nition
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increasingly speci�c from a system point of view, e.g. when a user types some
keywords or clicks on some documents, i.e. the uncertainty is reduced; and (P2)
The IN changes from a user point of view. The IN can become more speci�c as
the user reads some documents, or it can slightly drift as user interests do. This
type of drift has been observed and analysed by [18] within search sessions.

An example of such a two-part process is described in [20] where the hypothe-
ses are that a user has a topicality and a novelty pro�le, the former providing
the context of the IN while the latter changes during a search session. Our
model captures both processes within the same space, which we refer to as an
Information Need Space in this paper.

Whereas the �rst process can be easily described within a standard proba-
bilistic framework (we restrict the IN to subspaces of the whole space), the latter
would bene�t from a quantum probability formalism as the INs can drift from
two overlapping subspaces. For example, consider Figure 1 and assume that the
possible user INs lie within a three-dimensional space. If we �rst restrict the IN
to subspace A, then this corresponds to process (P1): Vectors orthogonal to A
would be discarded. Later, if we know based on further evidence that the IN
subspace is now B, then this corresponds to process (P2): As vectors belong
to A, they are not orthogonal to B and thus projecting them in B makes them
drift away from their original representation. We posit that the classical prob-
abilistic framework would address the uncertainty of the system view over the
retrieval process (P1) whereas the quantum probability framework addresses the
changes of the user internal state (P2). As the quantum probability framework
is a generalisation of the probabilistic one, we can use the same representation
and evolution operators to model both processes. We describe this framework
in the following section.

4 A quantum view

In this section, we describe our framework while also introducing the framework
of quantum probability.

4.1 Link with standard probability theory

Quantum probability can be thought of as an extension of classical probability
theory, and relies on linear algebra in Hilbert spaces. The equivalent of a logical
proposition or event is a subspace. As there is a one-to-one relationship between
subspaces and projector on subspaces, we will switch between one interpretation
and the other, depending on what we want to illustrate. A projector is a special
case of an observable, more precisely a yes/no observable: The observable is
binary because a state (vector) can belong or not to the associated subspace.
It is possible to naturally extend standard probability theory, by de�ning a
probability density operator over those subspaces, i.e. by associating with each
subspace/projector a probability.
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Next, we �rst present how to reconstruct a classical probability space using
a Hilbert space, in order to show how the quantum formalism is a general case
of probability theory. We then show how this can be extended to the quantum
probability formalism, and highlight their di�erences and uses in our interactive
IR framework.

B

A

C

Figure 1: Three
two-dimensional sub-
spaces (A, B, C) in
a three dimensional
space.

For simplicity, let us consider a probability space
with a �nite sample space Ω = {ω1, . . . , ωN} of car-
dinality N where each ωi corresponds to a pure IN.
Moreover, as each ωi corresponds to a distinct atomic
event, we require that those INs be orthogonal (i.e. a
user with the IN ωi will not be interested by a piece
of information answering ωj where i 6= j), a restric-
tion that can easily be removed within the quantum
formalism as discussed in Section 4.2. As usual, a
probability distribution is associated with this sam-
ple space, i.e. a probability Pr (ωi) is associated with
each atomic event in Ω. Then, an event is a sub-
set A of the sample space Ω whose probability is
Pr (A) =

∑
ω∈A Pr (ω).

In the sequel, we use the bra-ket Dirac notation
as done in quantum theory. Restricted to �nite vec-

torial spaces, a vector of the Hilbert space is denoted by |x〉 while its conjugate
transpose is denoted 〈x| =̇ |x〉†.

Let us see how our probability space is formalised within the quantum
probability formalism. We associate our sample space Ω with one basis of a
Hilbert space of dimension N . Let us choose an arbitrary orthonormal ba-
sis B = {|ω〉 |ω ∈ Ω} where each element of the basis |ω〉 corresponds to the
atomic event ω. These vectors are pairwise orthogonal and of norm 1. To each
atomic event of the sample space is associated a one-dimensional projector Pω
corresponding to the one-dimensional subspace de�ned by |ω〉, and which is
equal to |ω〉 〈ω|. Note that it corresponds to a n × n matrix where n is the
dimension of the Hilbert space. The probability distribution over the Hilbert
space is de�ned by a so-called density operator ρ de�ned by

ρ =
∑
ω∈Ω

Pr (ω) Pω (1)

where the Pr (ω) sum up to 1. Note that a special case of a density operator
is simply Pω for a given atomic event ω when the exact state of the system is
known, e.g. the IN of the user is completely speci�ed. In this case, the whole
probability mass is concentrated onto a single atomic event, i.e. Pr (ω) = 1.

The event A is associated with a yes/no observable OA. It is a projector
associated with the subspace spanned by the basis vectors |ω〉 for ω ∈ A. This
projector can be written OA =

∑
ω∈A Pω. In the following formula where tr

denotes the trace operator, we give both quantum and standard de�nitions to
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show how they relate:

Prρ (OA) =̇tr (ρOA)︸ ︷︷ ︸
quantum de�nition

= tr

(∑
ω∈Ω

Pr (ω) Pω
∑
ω∈A

Pω

)
=
∑
w∈A

Pr (ω) =̇Pr(A)︸ ︷︷ ︸
standard de�nition

(2)

The equality is due to the fact that PωPω′ = 0 whenever ω 6= ω′, as we assumed
the vectors were pairwise orthogonal. This is exactly the way of computing a
probability by decomposing it into atomic and incompatible events (as shown
on the right side of the equation). Without giving too many details, we point
out that the quantum de�nition is more general because OA can be expressed
in a di�erent basis than B.

We have just de�ned a formalism that allows us to express a classical proba-
bility distribution using linear algebra. All the information about the probability
distribution is contained into a density operator ρ, and it can be shown that for
any probability distribution over a Hilbert space there exists a corresponding
density operator [14, p. 81]. From a practical point of view, the above de-
scription of standard probabilities with Hilbert spaces unlocks the potential of
de�ning probabilities through geometric relationships, and permits a generali-
sation to a non standard probability formalism, which we describe in the next
section.

We posit that at this level, we are able to model the �rst component of
the search process, which corresponds to �nding the right subspace of the IN,
i.e. in classical terms to �nd the subset of the IN sample space. However, it is
intuitive to think that INs are not mutually exclusive. We make the hypothesis
that such a non-exclusiveness is captured by the geometry of IN space, and this
can be modelled within a quantum probability formalism, as discussed in the
next section.

4.2 Superposition, mixtures and information needs

Now we turn to how probability theory is generalised. We introduce the notion
of superposition and mixture, and relate them to their use in our model of in-
teractive IR. Said shortly, superposition relates to an ontologic uncertainty (the
system state is perfectly known, but some events are true only with a given
probability) whereas mixture relates to standard probabilistic uncertainty (the
system is in one of the states with a given probability). Superposition is a salient
characteristic of quantum probabilities and is important since it gives us a way
to represent geometrically new INs while the quantum probability framework
ensures we can still compute probabilities for the new INs. Mixture and super-
position gives us more �exibility in the way we can represent our current state
of knowledge of an IN.

Let us illustrate this with an example. Suppose that |ωT 〉 =
(

1 0
)†

and |ωL〉 =(
0 1

)†
form a basis of the IN space. Suppose the former represents the IN of

a user looking for information about tigers (T) and the latter about lions (L). In
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order to represent a user looking for a tigron (the o�spring of a tiger and a lion),
we assume that this can be represented by the vector |ωTL〉 = 1√

2
(|ωT 〉+ |ωL〉)

which is a superposition of two INs, where the 1√
2
factor ensures |ωTL〉 norm

is one. This is a strong assumption which we will study when experimenting
with the framework. Aerts and Gabora [1] worked on how to combine concepts
in a (quantum) vector space, but use spaces of increasing dimensionality to do
so (through the use of a tensor product). As a �nal remark on superposition
of INs, we would like to note that complex numbers could be used to combine
INs, e.g. to distinguish tigrons (the tiger is the father) from ligers (the lion is
the father), and that superposition is not restricted to topicality. For instance,
assuming that we know how to represent a user searching for a paragraph and
a user searching for a chapter, we could imagine representing a user looking for
a paragraph as a superposition of both.

The superposed IN |ωTL〉 is quite di�erent to a user who is equally interested
by tigers or lions, which would be represented as a mixture of the INs |ωT 〉 and
|ωL〉. Formally, this IN would be associated with a density operatorρT∨L =
1
2 (ρT + ρL) where ρL and ρT are respectively the projectors associated with
|ωT 〉 and |ωL〉. For example, ρT = |ωT 〉 〈ωT |. The density operator ρT∨L is to
be interpreted by saying that with probability one half the IN is about tigers (or
equivalently about lions).

We can see also the di�erence if we represent the densities by their matrices

in the (|ωT 〉 , |ωL〉) basis. We have the mixture of IN ρT∨L = 1
2

(
1 0
0 1

)
which

is di�erent from the pure IN ρTL = 1
2

(
1 1
1 1

)
. An important observation is

that these di�erent densities imply di�erent probabilities. Let us suppose that
the relevance of a document corresponds to a yes/no observable, and that the
relevance of a document about lions (respectively tigers, tigrons) are represented
by the projectors (yes/no observables) OL, OT and OTL associated with the
subspaces generated by |ωT 〉, |ωL〉 and |ωTL〉, respectively. For example, OT =
|ωT 〉 〈ωT |. According to Eq. (2), we can compute the probability of relevance of
the di�erent documents, which gives:

PrρT L
(OL) = PrρT∨L

(OL)= 1
2 and PrρT L

(OTL) = 1 6= PrρT∨L
(OTL) = 1

2

Interestingly, we cannot distinguish the probability of relevance of the docu-
ment about lions when the IN is about either tigers and lions or about tigrons (two
�rst probabilities) but there are two reasons for this: In the former, the proba-
bility 1

2 is caused by the discrepancy between the IN and the document, whereas
in the second case the probability is due to the fact that the document only cov-
ers a part of the information need. Next, thanks to the quantum formalism the
probabilities for the same INs are di�erent when we evaluate the relevance of
the document about tigrons (two last probabilities). We thus bene�t from a
two-dimensional space to distinguish di�erent INs that would be expressed sim-
ilarly in a standard vector space model. One consequence is that if we search
for a set of documents that satisfy T or L, we would have two di�erent types
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of documents (about tigers and lions, assuming each document covers one IN
only) whereas one document would satisfy TL.

Mixtures are also useful to represent the IN density operator ρ0 at the very
beginning of the information retrieval process, as we do not know which state
the user is in. We would de�ne the initial IN density operator as ρ0 =

∑
i PriPi

where i ranges over all the possible information needs and Pri is the probability
that a random user would have the IN i when starting a search. Using the
mixture is also motivated by the fact that we deal with classical undeterminism,
i.e. we know the user is in a given state but we do not know which. The mixture
can also be thought as a set of vectors describing all the possible INs, each vector
being associated with a probability. This representation is particularly useful
in the next section where we show how this initial IN ρ0 is transformed through
interactions.

4.3 Measurement and Interaction

Beside di�erentiating mixture and superpositions, the quantum formalism has
also consequences for computing a conditional probability. These consequences
are linked to the way a measurement is performed in quantum physics. We use
measurement to model interaction and describe in this section both how the
measurement modi�es the density operatorρ and how we link measurement to
the di�erent interactions.

For simplicity, we now use A to denote the related yes/no observable, sub-
space or projector. Since there is a one-to-one correspondence between them [14],
they can be used to denote the same thing albeit in a di�erent context. Given a
system density operator ρ, if we observe OA, the new density operator denoted
ρ B OA is de�ned by

ρ B OA = OAρOA/tr (ρOA) (3)

This amounts to restricting ρ to the subspace de�ned by OA and ensuring that
ρ B OA is still a density operator. The e�ect of the restriction is to project every
IN of the mixture ρ onto the subspace de�ned by OA (with some renormalisation
to ensure the probabilities still sum up to 1). One can readily verify that the
probability of OA with respect to ρ B OA is 1. It means that when A has
just be measured, we know it is true at least until further interaction (or in
general, evolution) modi�es the density operator. Measurement can be thought
as a generalisation of conditionalisation, as we can compute the conditional
probability of OA given OB , or more precisely of measuring OA knowing that
we have measured OB , as Prρ (OB |OA) = PρBOA

(OB).
In quantum theory, the order of the measurements is important, since in

general the densities ρ B OA B OB (applying two times the Eq. (3), for OA
and then for OB) and ρ B OB B OA are di�erent. It is a desirable property
whenever subsequent measurements of a system should yield di�erent results,
which is the case in interactive IR: The sequence of interactions represents the
evolution of the user, and should be taken into account. A user drifting from an
IN (e.g. hotels in Barcelona) to another (e.g. museum in Barcelona) is not the
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same as the reverse, which illustrates the adequacy of the quantum formalism to
handle such drifts. This is illustrated by Figure 1, where visually it can be seen
that measuring OB (hotels) then OC (museums) is di�erent from the reverse,
since in the �rst case the IN vectors will lie in the subspace C whereas they
would lie in B in the other case.

Starting with the initial density operator ρ0 (section 4.2), we make the as-
sumption that each implicit or explicit interaction between the IR system and
the user corresponds to a measurement, i.e. that every interaction is associ-
ated with a yes/no observable O. After the interaction, we can recompute the
IN density operator using Eq. (3). For example, a user whose internal context
is associated as Ouser, who asked a query associated with Oq1 and deemed a
document relevant (associated with Od1), would be represented by a density
operator ρ0 B Ouser B Oq1 B Od1 . Among other users, this density operator
can be used to predict the relevance of other documents.

In the following, we make our framework more concrete: In Section 4.3.1 we
show how some interactions would be mapped to an observable. We argue that
direct measurement can be too harsh in some cases and show how a generalisa-
tion of Rocchio's rule can be used to overcome this problem in Section 4.3.2.

4.3.1 Mapping interactions to observables

In order to map interactions to observables, we restrict to the topical relevance
and assume a vector space where dimensions are associated with terms. How
to deal with more relevance dimensions is left for future work. We also as-
sume we know how to compute the initial density operator ρ0 � which could be
approximated using the document representation described next.

Giving the current IN density operator ρt, we can compute the probability of
relevance Prρt

(Od) of a document d , provided Od is the observable associated
with the relevance of document d. To build such an observable, and as a �rst
approximation, we can suppose that each paragraph p corresponds to exactly
one IN |ωp〉, and hence that its representation is a one dimensional subspace.
It is then possible to compute the subspace spanned by the vectors {ωp} cor-
responding to the di�erent paragraphs, and use this subspace to represent the
document relevance. When a user deems a document relevant, we could use the
same representation to update the current IN ρk. In that case, we would have
the new IN density operator ρt+1 = ρt B Od.

The �rst possible type of interaction would be the (re)formulation of a query
by a user. We would associate to a given query a subspace/observable Oq, and
update the current probability density operator ρt to ρt+1 = ρt B Oq. A repre-
sentation of the query could for example be computed through pseudo-relevance
feedback provided we know how to represent the documents: The subspace as-
sociated with Oq would then be the subspace spanned by the observables repre-
senting the top-ranked documents (by a standard IR algorithm). For example,
in Figure 1, if A and B correspond to two di�erent top-ranked documents for a
given query, then Oq would correspond to the whole three dimensional space (i.e.
the join of subspaces A and B). Another way to compute the query observable
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Oq, without relying on an external model, would be the union of the subspaces
representing the paragraphs where each term of the query appears.

Here, we give one illustration of the usefulness of the quantum formalism for
an interactive IR framework. The query observable Oq (or the document observ-
able Od) can be used to detect if a user's change of mind is too important to be
a simple drift, an important feature an interactive IR system should have [18].
Within the quantum framework, we use the same geometric representation to
both update the density operator knowing an event and to compute the prob-
ability of this event. Indeed, when at time t the user types a new query q′, we
can compute the probability of the query according to the current IN density
operator ρt, i.e. compute Prρk

(Oq′). Based on this value, our IR system would
decide that the user switched to a new IN, and react accordingly.

4.3.2 A probabilistic generalisation of Rocchio's update rule

Sometimes measurement can be too harsh, either because we are not sure we
made the observation (as in relevance feedback) or because we do not expect
the user IN to completely drift to the INs covered by e.g. a clicked document.
Said otherwise, we want to give some inertia to the user and this is exactly what
Rocchio's algorithm does. We show how this algorithm can be extended in a
principled way with our formalism.

Consider a user looking for information about tigers or lions, which can be
represented, respectively, as the subspaces A and C of Figure 1. If the user
deems relevant a document about tigers, the updated density operator would
only be made of INs belonging to the subspace A, which is orthogonal to C.
Documents about lions would be henceforth considered as non-relevant since
PrρBOA

(C) = 0 whatever the density operator ρ is. In order to give some
inertia to the underlying dynamics, we could as in Rocchio's algorithm use a
parameter α such that the new density operator combines both the last IN
density operator and the new one, i.e. ρt+1 = α (ρt B OA) + (1− α) ρt. This
formula is interpreted as the fact that with probability α the user IN has been
projected onto the subspace de�ned by document A, and with probability 1−α
it remained the same. It can be said that the above formula is a principled
generalisation of the Rocchio update rule. However, it is not equivalent to it,
since each IN vector composing the density operator ρt is (in general, i.e. when
it does not belong to subspace A) decomposed into two vectors, one projected
onto A while the other remains the same whereas with Rocchio, we only deal
with one vector, which has limitations e.g. when using negative feedback [16].

5 Conclusion

We proposed a new interactive IR framework, which exploits the strong con-
nection between geometry and probabilities present in the quantum probabil-
ity formalism. Our framework allows for a principled and geometric mapping
of user interactions into an IR model. In particular, we show how to handle
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click/relevance feedback and query reformulation. How to use the latter infor-
mation has not been explored in IR so far, beside providing query recommen-
dation. Other forms of interaction (e.g. navigation) would �t our framework,
through the de�nition of associated subspaces. Beside measurement, the quan-
tum framework is powerful enough to provide other types of evolution of the IN
density operator. This would provide a way to predict how a user might evolve,
e.g. in order to predict that users looking for hotels might look for museums in
a town.

Diversity and novelty are two important components of interactive IR sys-
tem [20] that we did not discuss. We believe that the non-standard logic asso-
ciated with the subspaces would be a useful property for such purposes, since
we could represent a set of documents as the union subspace spanned by the
di�erent document subspaces. The relationship between the union subspace and
the possible information needs provide enough information to compute how the
possible INs are addressed and how novel the documents are.

From a more practical perspective, future work includes experimenting with
di�erent possible ways of mapping interactions to observables, dealing with com-
plexity issues, in order to build an interactive IR model based on the ideas we
developed in this paper.
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