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Multidocument summarization (MDS) aims for each given
query to extract compressed and relevant information
with respect to the different query-related themes present
in a set of documents. Many approaches operate in two
steps. Themes are first identified from the set, and then a
summary is formed by extracting salient sentences
within the different documents of each of the identified
themes.Among these approaches, latent semantic analy-
sis (LSA) based approaches rely on spectral decomposi-
tion techniques to identify the themes. In this article, we
propose a major extension of these techniques that relies
on the quantum information access (QIA) framework. The
latter is a framework developed for modeling information
access based on the probabilistic formalism of quantum
physics. The QIA framework not only points out the
limitations of the current LSA-based approaches, but
motivates a new principled criterium to tackle multidocu-
ment summarization that addresses these limitations. As
a byproduct, it also provides a way to enhance the LSA-
based approaches. Extensive experiments on the DUC
2005, 2006 and 2007 datasets show that the proposed
approach consistently improves over both the LSA-
based approaches and the systems that competed in the
yearly DUC competitions. This demonstrates the poten-
tial impact of quantum-inspired approaches to informa-
tion access in general, and of the QIA framework in
particular.

Introduction

Multidocument summarization (MDS) systems aim to
extract information relevant to an implicit or explicit query

from a set of documents. These systems are commonly used
in most web-oriented summarization applications. Multi-
document summarization systems can be used with conven-
tional search engines, for example, to provide informative
snippets to help users navigate through different parts of the
result page (Amitay, 2001; Turpin, Tsegay, Hawking, &
Williams, 2007). They can also offer short summaries of
documents initially clustered by a news aggregator to assist
users in better understanding the different views contained
in the news (McKeown, Passonneau, Elson, Nenkova, &
Hirschberg, 2005; Sampath, & Martinovic, 2002). Another
application is a question and answering system that for each
asked question supplies information about the answer in the
form of a short extractive summary (Hirao, Sasaki, &
Isozaki, 2001).

Multidocument summarization is a more complex task
than single document summarization as it aims to select
sentences relevant to different query-related themes, inside a
set of documents rather than to only shorten a single source
text (Lin & Hovy, 2002; Mani & Bloedorn, 1999). A major
issue for MDS is to automatically detect these themes and
then extract the most relevant sentences with respect to these
themes to form the summary. Summaries can also be biased
by the query used for searching documents. Most
approaches to this task suppose that each sentence relevant
to the summary must fall within one and only one of the
identified themes. This assumption is too restrictive as it
ignores the many candidate sentences associated with
several identified themes, but not specifically associated
with one of them in particular.

Several latent semantic analysis (LSA) based methods
have been proposed for single document summarization
(Gong & Lin, 2001; Murray, Renals, & Carletta, 2005;
Ozsoy, Gulcin, Cicekli & Alpaslan, 2010; Steinberger &
Ježek, 2004). In them, spectral decomposition over the

Received July 1, 2011; revised September 13, 2011; accepted October 11,
2011

*This work was partially conducted while the author was working at the
School of Computing Science, University of Glasgow, UK.

© 2012 ASIS&T • Published online 16 February 2012 in Wiley Online
Library (wileyonlinelibrary.com). DOI: 10.1002/asi.21713

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 63(5):865–888, 2012



vectors representing the sentences is used to detect the dif-
ferent themes inside a collection of documents before select-
ing the sentences that are important for one or more themes
with a criterium depending on the specific LSA-based
approach used. However, the different LSA-based
approaches proposed so far do not compete with state-of-
the-art MDS systems. One reason is that these techniques
were first developed for single document summarization;
hence, they have not been optimized for MDS. The other and
more fundamental reason is theoretical; because this can be
seen only within the quantum information access framework
(QIA), we first introduce the latter.

The QIA framework, which was originally developed by
Piwowarski, Frommholz, Lalmas, and van Rijsbergen
(2010) to model information retrieval (IR), both relies on
quantum probabilistic theory—the quantum physics math-
ematical formalism—and defines a methodology to repre-
sent information objects such as textual documents. In QIA,
as for LSA, extracting the salient topics of one or more
documents starts by defining a set of vectors associated with
sentences. The QIA framework uses this set of vectors to
define a quantum probability density, i.e., a distribution over
vectors in a topical space.

This methodology allows us first to offer a reinterpre-
tation of the two different criteria that have been proposed
in LSA-based summarization and to show why they are
flawed if we reformulate them within the quantum prob-
ability formalism. In addition, we propose a new criterium
to select sentences for the summary that takes into account
all the sentences previously selected. This criterium relies
on the use of quantum events that are defined as subspaces
in a topical space. Intuitively, a good summary should
cover a subspace of the topical space associated with high
(quantum) probability density.

To validate our QIA-based formulation of MDS we
perform extensive experiments on three large datasets used
in the DUC 2005–2007 competitions. We vary a set of
parameters for both LSA and QIA-based approaches (prior
sentence density, weighting scheme, and rank selection in
the spectral decomposition), and show that our approach
consistently improves over both LSA-based summarization
techniques, and the best performing approaches in each of
these competitions.

In this article, we also report two byproducts of our
approach. First, we show that we can associate with each
sentence a prior probability, thus generalizing over the pro-
posed LSA approaches, which, as shown in the experi-
ments, improves over the performance of LSA approaches.
Second, the QIA framework relies on a general hypothesis
that if two themes (assumed to be vectors in a topical
space) are present with a non-null probability in a set of
documents, then any two linear combinations of those
vectors is also a theme of that collection.1 This hypothesis
could not be tested easily in ad hoc IR, but by slightly
modifying the QIA sentence selection criterium, we

experimentally show in this article that the hypothesis is
not invalidated, yielding an important result for the appli-
cation of the QIA framework to model information access
applications.

In the next section we provide the background of
and motivation for our work. In the following sections,
we present the QIA framework and its connection with
LSA-based approaches, along with our QIA-based
approach for MDS. We then describe our experimental
setup and results, and their analysis. In the conclusion, we
discuss the outcomes of this study and indicate areas for
further research.

Background and Motivation

We first present related work on MDS, before our moti-
vation for the use of the QIA framework on which our
quantum-inspired summarization approach is based.

Multidocument Summarization

Research in text summarization showed that human-
quality text summarization is very complex because it
encompasses information fusion (Barzilay, McKeown, &
Elhadad, 1999), sentence compression (Knight & Marcu,
2002), and language generation (Jones, 1993; McKeown,
Klavans, Hatzivassiloglou, Barzilay, & Eskin, 1999).
Simpler approaches have been explored, such as extracting
representative text spans, i.e., generating extract summa-
ries instead of abstract summaries. Extraction approaches
include statistical techniques and/or those based on surface
domain-independent linguistic analysis. Within this
context, query-biased MDS can be defined as the selection
of a subset of sentences that is representative of topics rel-
evant to a query or question, and present in a given col-
lection of documents (Radev Jing, Stys, & Tam, 2004).
This is typically done by ranking document sentences and
selecting those with a higher score and minimum overlap
for each of these topics. Usually, sentences are used as text
span units, but paragraphs have also been considered
(Mitra, Singhal, & Buckley, 1997). Using paragraphs can
be more appealing since they contain more contextual
information and provide a coherent sequence of sentences.
The quality of an extract summary might not be as good as
an abstract summary, but it is considered sufficient enough
for a reader to understand the main ideas or answers to a
question. Postprocessing can also be applied to produce a
more coherent summary.

Multidocument summarization techniques can be
broadly categorized into three groups: feature-based
(Amini & Usunier, 2011; Harabagiu & Lacatusu, 2005;
Radev et al., 2004), graph-based (Erkan & Radev, 2004;
Mihalcea, 2005; Wang, Li, Zhu, & Ding, 2008), and
lexical chain-based (Li & Sun, 2008) methods. The former
first identifies themes and then assigns scores to sentences
in each of these themes based on sentence-level and
intersentence features, e.g., sentence similarity, position,1This is discussed further in the Selection Criteria subsection.
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cluster centroids. Graph-based techniques begin by charac-
terizing a set of documents as a weighted text graph
and then recursively compute sentence significance glo-
bally from the entire text graph rather than using single
sentences as in feature-based methods. The underlying
hypothesis of both methods is that summary sentences are
those belonging to an identified theme or to a sentence
cluster found in the graph. Therefore, sentences relevant
to more than one theme or those midway between two
clusters in the graph are never extracted and hence are
never part of the summary. Finally, lexical chain
approaches first construct different sequences of semanti-
cally related words, chains relevant to the topic at hand
are identified and eventually sentences matching these
identified chains are extracted from the collection of
documents.

Our proposed QIA-based approach to MDS belongs
to the first group (feature-based) and bears similarity
with LSA-based approaches, a group of successful
approaches first proposed for single document summariza-
tion. They aim at extracting salient sentences of a given
document within a reduced term space2 and are based on
the singular value decomposition (SVD) of a term-sentence
matrix. There are two groups of LSA-based approaches.
The first (Gong & Lin, 2001; Murray et al., 2005) assumes
that each topic found by SVD should be present in the
final summary and select sentences having the highest
entry among each of the extracted topics. Steinberger and
Ježek (2004) found that sentences belonging to several
“latent” topics may be good candidates for extraction, but
are never selected by LSA-based approaches to form the
summary. To overcome this, they computed a score for
each sentence that depends on the most salient extracted
latent topics. As we discuss in the Quantum Summarisation
section, our approach reinterprets LSA-based methods
under the QIA framework, which naturally paves the way
for selecting those sentences falling into one theme or
more.

Quantum Information Access

We now turn to the QIA framework. Besides van Rijs-
bergen’s seminal work (2004), which advocated for the use-
fulness of the quantum theory formalism in IR, studies on
using quantum physics for information access express docu-
ment ranking with the aim to capture diversity (Zuccon &
Azzopardi, 2010), or to represent documents in a space
different from the standard term space (Huertas-Rosero,
Azzopardi, & van Rijsbergen, 2009). Our work is based on
the quantum information retrieval framework developed by
Piwowarski et al. (2010). This line of work was conducted
within the remit of ad hoc IR. However, as the framework is

being extended to other tasks, such as summarization in this
article, we use the more general term quantum information
access (QIA) to refer to this framework.

The basic assumption of QIA is that there exists a
Hilbert space3 � of information needs, called information
need space. Taking inspiration from van Rijsbergen
(2004), QIA provided both theoretical and experimental
insights on the relationships between quantum physics and
information access. In this article, we restrict ourselves to
a simple information need space, namely a topical space,
where each vector corresponds to a distinct topical aspect,
and each dimension corresponds to a term (or a bi-gram).
Such vectors are called atomic topics. We think such a
representation is enough for the summarization task
because this task is mainly about the detection of topics
and not of other information need-related spaces (such as
emotion or style).

The QIA framework relies on a multidimensional repre-
sentation of text fragments (any set of sentences), both to
represent the distribution over atomic topics present in a
fragment and to represent the topics covered by this frag-
ment, by means of a subspace. Using a multidimensional
representation of documents has been shown important in
IR, to deal with multitopic documents (Zuccon, Azzopardi,
& van Rijsbergen, 2009), to build up semantic spaces and for
contextual IR (Melucci, 2008). Among those, the work of
Melucci (2008) is the closest to ours because it uses spectral
decomposition to uncover subspaces (relevant context).
However, here we use subspaces to represent the topics
covered by an extracted summary.

Finally, as advocated in Piwowarski et al. (2010) and
according to our knowledge, QIA is the only framework
that provides a uniform and principled formalism dealing
with representations of documents and information
needs that span multiple dimensions. Previous works
using multidimensional representation did so for either
queries or documents, but not both. In this article, we
again use multidimensional objects to represent both the
information need (as discussed above) and the extracted
summary.

Here we first analyze the LSA-based methods by
showing that they can be interpreted within the QIA frame-
work. Indeed, the scores computed to rank sentences can
be shown to be (quantum) probabilities that indicate the
“goodness” of the sentence for inclusion in the summary.
This QIA-theoretic interpretation has the advantage of
clearly showing why the hypothesis of linking summary
sentences exclusively to just one theme (latent topic using
the LSA terminology) is flawed. We further show that
under the QIA framework a more natural criterium for
selecting sentences can be defined for MDS, which trans-
lates into a difference in performance on the Document
Understanding Conference (DUC) test collections.

2Sentences are represented in a term space. Singular value decomposi-
tion (SVD) is used to find the main latent topics, i.e., the “cluster” repre-
sentatives in the original term space.

3Roughly, a vector space on the complex field with a geometric structure
defined by an inner product.
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Quantum Summarization

In the following, we first present the QIA framework and
link it with a measure on the topicality of text fragments,
providing a quantitative view on the salient themes of such a
set of text fragments. Then we show the link between QIA
and spectral decomposition, and reinterpret existing LSA-
based approaches within this framework. Our proposed
model is presented in the subsequent section.

Quantum IA and Summarization

The QIA framework. Quantum physics describes the
behavior of matter at atomic and subatomic scales by iden-
tifying the state of a physical system in a known state as a
state vector in a Hilbert space �, where a state vector is a
unit vector j in �. States determine statistically the mea-
sures obtained on the system, such as the position of a
particle. In this case, the state vector associated with this
particle determines the probability that it is at a given
position.

In the QIA approach to summarization, the concept of a
“system” does not refer to a physical entity, but to the topi-
cality of a text fragment, i.e., any subpart of a set of docu-
ments. More precisely, the QIA framework (Piwowarski
et al., 2010) relies on the existence of a Hilbert space � of
topics, called topical space, where each vector corresponds
to an atomic topic. An atomic topic can be compared to the
notion of “factoid” or “theme” (Halteren & Teufel, 2003)
used in summarization and question-answering to assess the
amount of relevant information a summary or an answer
contains. Further, a theme (vector) as extracted by LSA ap-
proaches to summarization corresponds to an atomic topic.

An event is represented as a subspace S of the Hilbert
space �. In our case, a subspace can be seen as an (infinite)
set of atomic topics. We can evaluate the probability that a
fragment represented by the atomic topic j is similar to one
of the atomic topics present in the subspace.4 If j is strictly
contained within the subspace, then the probability is 1. If j
is orthogonal to any atomic topic of the subspace, then the
probability is 0. In the other cases, the closer j is to the
subspace, the closer its probability would be to 1. More
formally, the probability of an event is given by the square of
the length of the projection of j onto the corresponding event
subspace S, that is by computing the value ||Ŝj||2, where Ŝ is
the projector onto the subspace S, as illustrated in Figure 1.

Note that as evoked earlier, even when the system state is
known or determined (i.e., we know which state vector j
characterizes the system), the events are not certain. This is a
property of the quantum physics formalism. Within the
topical space, this means that even if we know the atomic
topic to be j, the probability that the text fragment deals with
a topic j′ not orthogonal to j is not null. Said otherwise,

topicality is a continuum that goes from completely not-
related atomic topics (orthogonality) to exactly the same
atomic topic (linearity).

We cannot assume that a text fragment is associated with
only one atomic topic. To consider multitopicality, we
assume that a text fragment has a given probability of dealing
with each atomic topic it contains, where the probability
reflects the importance of each atomic topic within the text
fragment. In (quantum) physics, states are exclusive, i.e., a
system can be in only one state at any given time. Similarly,
we can imagine that each text fragment has an associated set
of atomic topics, and each time we want to measure the
topicality of the fragment, we pick only one of these.As states
are mutually exclusive, following standard probability
theory, we require that the probability over the atomic topics
sums up to 1. Thus, given a probability distribution over the
topics p(j), we define the probability of an event S, where S
means the text fragment is about the topics defined by S, as:

q S p q S p S( ) = ( ) ( ) = ( )∑ ∑ϕ ϕ ϕ ϕ
ϕ ϕ

ˆ 2

(1)

We use the symbol q to denote the quantum probability

measure. Note that the above equation reduces to Ŝϕ
2

if

p(.) is null for all j except the vector ϕ , i.e., when there is
no uncertainty about the topical state.

This probability is also quantum, i.e., it does not obey
standard probability laws. This can be seen easily by
showing that the sum of the probabilities of three mutually
exclusive events is greater than 1. To illustrate this, consider
the two mutually exclusive events associated with the one-
dimensional subspaces S1 and S2, respectively, associated
with the vectors j1 and j2 in Figure 2. If the probability
distribution is defined by p(j1) = 1, then q(S1) = 1 and
q(S2) = (j1·j2)2 > 0. The sum of both is indeed strictly
greater than 1.

Representing the Topicality of Text Fragments

We describe now how the QIA framework is used to
represent text fragments. The representation is based on two

4Here, “similarity” is to be interpreted both as the standard cosine
similarity of IR (intuitive point of view) and as a quantum probability
(theoretical point of view). It is the quantum view that is described in this
paragraph.

FIG. 1. Quantum probabilities—the projection of j on S.
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assumptions: (a) a fragment typically contains various
atomic topics; and (b) each fragment can be split into (pos-
sibly overlapping and noncontiguous) different atomic frag-
ments, where each atomic fragment addresses one atomic
topic. This follows from research in focused retrieval, where
answers to a query usually correspond to document excerpts
(sentences or paragraphs) and not full documents (Piwowar-
ski, Trotman, & Lalmas, 2009).

In this article, following the extractive summarization
literature, we assume that the atomic topics are in a one-to-
one relationship with sentences, i.e., that each sentence is an
atomic fragment. Even though in an ad hoc IR sliding
windows over the text yielded better results (Piwowarski
et al., 2010), we chose to keep sentences as atomics frag-
ments for two reasons. First, texts used for summarization in
DUC are news articles and not web pages as in some of the
TREC collections; hence, sentence extraction algorithms are
performing better. Second, sentences are a natural unit in
extractive summarization and were used by all other LSA-
based techniques.

From an intuitive point of view, it should be noted that
using sentences or sliding windows is not fully satisfactory,
and that sentences generally map to more than one atomic
topic or factoid. In theory, it would be useful to be able to
extract and represent such factoids, but in practice both of
these problems are complex. Here we adopt a simpler
approach where sentences are atomic topics and the text they
contain is used straightforwardly to represent the corre-
sponding atomic topic.

A fragment F is then identified by the sequence j1,. . .,jf

of f atomic topic vectors corresponding to the f sentences of
the fragment. We also denote js the atomic vector associated
with the sentence s in the fragment F.

Text fragments can be represented in two ways using
QIA, as a distribution of probability over atomic topics or
as an event corresponding to the atomic topics present
within the fragment. To do this, we first need to define
a probability distribution over the f sentences of a
fragment F.

In the most general case, we assume that the set of atomic
topics corresponding to a fragment can only be a subset of
those that appear in the fragment. In practice, we define a
probability p(s | F) that the sentence s represents the frag-
ment atomic topic. Using the Kronecker delta function δϕϕi

(which is equal to 1 if and only if j coincides with ji and 0
otherwise), this gives:

p p s s

s

ϕ δϕϕF F
F

( ) = ( )
∈
∑ (2)

The most straightforward way to define the prior p(s | F)
over sentences is to assume that all sentences are equally
important, so the distribution over the sentences is uniform,
i.e.,

∀ ∈ ( ) =s p s
number of sentences

F F, 0
1

(3)

This is the approach (implicitly) taken by all the LSA
approaches for MDS. We present in the subsection Sentence
Prior other priors that perform better experimentally, and
can also be used within LSA approaches when interpreted
within our QIA framework.

Equations 1 and 2 define a quantum probability distribu-
tion, q(S | F ):

q S p SF F( ) = ( )∑ ϕ ϕ
ϕ

ˆ 2

The above allows us to illustrate the fundamental hypoth-
esis upon which the QIA framework relies. Let us consider
the case of the simplest type of events, i.e., one-dimensional
subspaces S iϕ defined by a vector ji. If one or both events
Sϕ1 and Sϕ2 have a non-null probability, then any event Sy

associated with a linear combination of these two vectors
has also a non-null probability. This is illustrated in Figure 2
and can be shown using Equation 4 given in the next section.
In our experiments, we show that the QIA hypothesis is not
invalidated. To prove that the hypothesis holds is in practice
impossible because we would have to prove it on a theoreti-
cal basis, and information access is (mostly) experiment-
driven; hence, we can only show through experimental
evidence that the hypothesis holds.5

We discuss now the second possible representation of a
fragment, as an event corresponding to the topics covered
by it. We assume that the subspace corresponding to the
fragment should contain each atomic topic in the fragment
with a probability of 1, i.e., that q S sϕ F( ) equals 1 for any
sentence s in the fragment F. As discussed above, any
linear combination of two atomic topic vectors has an asso-
ciated non-null probability. Consequently, the subspace
corresponding to a fragment is the span of the different
vectors in F. We denote SF the subspace associated with a
fragment F.

This dual view of the topicality of text fragments, and
more generally of information objects, is at the core of the

5These experiment-driven “proofs” of hypotheses can be found in many
other works in IR, and more particularly in works working on the axiomatic
of IR, e.g. Fang, H., Tao, T. and Zhai, C. (2011).

FIG. 2. Illustration of a density in two dimensions—darker areas mean
higher probability. In this figure, we can see that the probability density
smoothly changes with respect to normalized linear combinations of vectors.
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QIA framework and is used when interpreting the LSA-
based approaches in the next two sections, as well as when
we define our proposed criterium for summarization.

Spectral Decomposition and QIA

To link the proposed approach to LSA-based ones (as
described in the next section), we first need to relate the QIA
framework with spectral decomposition. To this end, we first
derive a computable version of the (quantum) probability
q(S | F), following the usual approach taken in quantum
physics of using the trace operator (Nielsen, & Chuang,
2000):

q S p S p S

S p

F F F

F

�

�

F

( ) = ( ) = ( )( )

= ( )

∑ ∑

∑

ϕ ϕ ϕ ϕ ϕ

ϕ ϕϕ

ϕ ϕ

ϕ

ρ

ˆ ˆ

ˆ

2
tr

tr
� ������ �������

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= ( )tr ŜρF

(4)

where rF is a probability density operator, a term coming
from quantum formalism. It can be shown that any positive
semidefinite linear operator r of trace 1 is a valid pro-
bability density operator (Nielsen, & Chuang, 2000). The
interest of this reformulation is that we have a product
of two linear operators, i.e., matrices, Ŝ and rF, which,
respectively, corresponds to the event (subspace) and the
density operator.

From Equations 2 and 4, the density associated with F is

ρ ϕ ϕF
�

F

F= ( )
∈
∑ p s s s
s

(5)

where js is the atomic vector associated with the sentence s
in the fragment F. As any self-adjoint linear operator of
finite rank, the density rF can be decomposed, using eigen-
value decomposition, into

ρF
�= U UΣ2

where U is an orthonormal matrix and S is a diagonal matrix
of non-null eigenvalues. This defines the spectral decompo-
sition of the density view on fragments, i.e., of the density
associated with a fragment F.

Note that the lowest eigenvalues are usually discarded
since they correspond to meaningless dimensions, i.e.,
dimensions associated with noise (Deerwester, Dumais,
Furnas, & Landauer, 1990), which is in our case due the
process of extracting atomic topics from text. The kth rank
approximation of A can be written

ρF
�k k k kU V( ) ( ) ( ) ( )= Σ2

where U(k) and V(k) are restrictions of U and V, respectively,
to their k first columns, and S2(k) corresponds to the first k
columns and rows of S2.

We now turn to the second view on fragments, that of a
subspace/projector. From the above decomposition, we can
define the projector ŜF associated with the subspace spanned
by the atomic topic vectors of fragment F. There, the
columns of U form the basis of the subspace that contains
any linear combination of the atomic vectors, and hence it
can be shown that

ŜF
�= UU

As in the case of eigenvalue decomposition, we use only the
first k columns of U to discard dimensions associated with
noise:

ŜF
�k k kU U( ) ( ) ( )=

We showed how the density and the projector (associated
with the subspace) can be computed using eigenvalue
decomposition. This provides the necessary basis for the
derivations connecting QIA to LSA-based summarization,
which we describe next. To declutter notations, we drop (k)
in the rest of the article.

Connections With LSA Summarization

In this section, we link QIA as described above, with the
LSA-based summarization techniques. We focus on two
techniques, that of Gong and Lin (2001) and Steinberger and
Ježek (2004) because all others are variations of them. We
adapt the notations for clarity.

The LSA-based techniques are based on the singular
value decomposition (SVD) of the term-sentence matrix A,
where each column is associated with a sentence from the
set of documents D to summarize and each row to a distinct
term:

A U V= Σ � (6)

where U and V are orthonormal matrices and S is a diagonal
matrix with decreasing entries �1 < . . . < �n. Each singular
value �i corresponds to what we call in here an SVD atomic
topic.6 The columns of U represent the atomic topics in the
term space. The columns of V represent the atomic topics in
the sentence space, i.e., the magnitude of the matrix entry Vij

corresponds to the importance of sentence i for atomic topic
j (Gong & Lin, 2001).

Without loss of generality, we assume that each column
of A has a norm equal to the inverse of the square root of the
number of sentences in the set of documents D. This allows
us to link this SVD decomposition to the previous section
and hence to the QIA framework. More precisely, by assum-
ing that the distribution over sentences p(s | D) is uniform,
we can then write, using Equation 5,

6The standard terminology in summarization is a latent topic, or SVD
theme.
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ρ ϕ ϕD
�

D

�D= ( ) =
∈
∑ p s AAs s
s

(7)

which also implies that rD equals to US2UT.
Using the above, we now show how the two above-

mentioned LSA-based techniques can be expressed within
the QIA framework. We use X•j (respectively, Xi•) as short-
hand for the jth column (respectively, ith row) of a matrix X.
We denote si the ith sentence of the set of documents, i.e., the
sentence corresponding to the ith column of A.

To form a summary, Gong and Lin (2001) use the k
atomic topics associated with the k highest singular values,7

i.e., with �1,. . .,�k. The jth atomic topic is represented in the
sentence space by the jth column of the matrix V (Equation
6). The ith entry Vij of this vector corresponds to the impor-
tance of the ith sentence for the jth atomic topic. Formally,
for the jth atomic topic, Gong and Lin (2001) select the ith

*
sentence such that:

i V
i

ij* = argmax 2

Using the fact that V = ATUS-1, we can rewrite this selection
criterium as:

i
ij

i
ij

i
ij jj

i
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argma
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DS

• • •

( )

( ) = ( )
= ( )

2
tr (8)

where SD
j( ) is the one-dimensional subspace associated with

the jth column of U, i.e., to the jth latent atomic topic. Hence,
the selection process corresponds to maximizing the prob-
ability associated with the jth dimension of the subspace SD

that represent the salient topics of the documents to summa-
rize. This means that a sentence that is a combination of two
atomic topics (j1) and (j2) might not be selected because
it lies halfway between the subspaces SD

j1( ) and SD
j2( ).

However, this topic, according to the hypotheses of the QIA
framework, is fully contained with the topics of the docu-
ments, and would constitute a good candidate for the
summary.

This is an illustration of the problem of the hard cluster-
ing existing in the Gong and Lin (2001) selection method.
This problem is further exacerbated when singular values
are close to each other. In the extreme case where they are
equal, i.e., σ j1 and σ j2 , the SVD problem is degenerate, i.e.,
the two vectors can be any two that define the same two-
dimensional subspace, making the criterium arbitrary and
sensitive to numerical approximations.

Steinberger and Ježek (2004) also noticed this problem.
Although they did not give a principled explanation of the
underlying reason, they noted that a sentence can be highly

ranked for many atomic topics but never sufficiently to be
selected. The approach they proposed is to first select an
appropriate rank k for approximation of the matrix A. Then,
they proposed to select the ith sentence that maximizes the
following criterium:

g V V Vi ij j
j

k

i i= = ( )
=

• •∑ 2 2

1

2σ tr Σ �

Because Vi• equals s Ui
� Σ−1, we have

g s UU s q si i i i= ( ) = ( )tr � �
DS (9)

where si is a pure atomic topic state, i.e., we know that the
atomic topic is si. Hence, this criterium selects sentences by
maximizing the probability of being present in the most
important (i.e., k) document topics.

This method has two shortcomings. First, it assumes that
the dimension of SD is correctly chosen. If the rank is
maximal, the probability defined by Equation 9 is always
equal to 1 because SD is a subspace that contains all the
atomic vectors present in the documents of D. Second, as
opposed to Gong and Lin (2001), sentences close to only
one SVD atomic topic can be selected repeatedly. Although
for important atomic topics, i.e., those with high singular
values, this can be a good property, it may lead to too much
homogeneity in the summary. In the worst case, a sentence
that occurs more than one time in the document to be sum-
marized can be chosen repeatedly.

In the next section, we propose an approach that cater for
atomic topics that (a) are a combination of the SVD atomic
topics, hence overcoming Gong and Lin’s (2001) problems,
and that (b) extract sentences from different topics, hence
overcoming the limitations of Steinberger and Ježek (2004).

The QIA-Based Approach

In this section, taking advantage of the quantum probability
framework, we first describe alternatives to the uniform sen-
tence prior discussed in the Quantum IA and Summarization
subsection. We then go further and describe our approach for
MDS based on QIA. More precisely, we propose a measure of
the summarization quality of a set of sentences that is linked
to how much of the probability mass of atomic topics in the
documents to be summarized is covered. We also demon-
strate from a theoretical perspective that the proposed
measure, which is motivated by the quantum formalism, has
none of the disadvantages listed in the previous section.

Sentence Prior

In this section, we define the importance of each sentence
from the documents to be summarized by setting the prior
probability p(s | D) of a sentence s defined by Equation 2. In
our case, the importance should correspond to the likeliness
that the atomic vector associated to sentence s be discussed
within the summary. To define quantitatively how important

7If there are less than k nonnull singular values, the method cycles
through the singular values beginning with the highest ones.
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a sentence is, we consider the four following prior distribu-
tions over the sentences of the documents to be summarized:

1. The uniform prior p0 (Equation 11)
2. The document uniform prior pd, which accounts for the

varying number of sentences in each document (Equation
12)

3. The topic-biased prior pt, which depends on the presence
of query terms in the sentence (Equation 13)

4. The length-biased prior pl, which accounts for the varying
length of sentences (Equation 14)

We use a parameterized mixture of these distributions to
form the final prior p(s | D) on sentences:

p s p s p s p s p sd d t t l lD D D D D( ) = ( ) + ( ) + ( ) + ( )α α α α0 0

(10)

where a• are positive real values summing to 1. We describe
each of the prior probabilities next.

Uniform prior. The initial prior p0 defines the importance
of a given sentence, regardless of its length, its relationship
with the topic or of the number sentences in the document.
It assumes that all sentences are equally important:

p s
sentences d

d

0
1( ) =

( )
∈
∑ #

D

(11)

where #sentences(d) is the total number of sentences in the
document d.

Document uniform prior. The previous prior gives more
importance to longer documents because the probability of
selecting a sentence from a given document is directly pro-
portional to the number of sentences it contains. An alterna-
tive approach is to consider that each document is as
important as another, i.e., we first sample documents with a
uniform probability of 1/card (D). We then assume that
within a document, there is an equal chance that the impor-
tant topics be defined by any of the sentences present in the
document. Given these assumptions, we can write the dis-
tribution over the sentences given the set of documents D:

p s
card sentences d

d
s

F
D

( ) =
( )

×
( )

1 1

#
(12)

where ds is the document containing the sentence s.

Topic-biased prior. This prior depends directly on the
topic keywords. We chose to define it as a probability pt(s)
that corresponds to the probability of picking the sentence s
if we select by random a sentence containing an occurrence
of any of the topic keywords. This gives

p s
topic terms

topic terms
t ( ) = ( )

( )
#

#

s

D
(13)

where #topic terms (•) is the number of topic terms present
in the sentence s or the set of documents D (the number
includes the repetition of the topic terms).

Length-biased prior. So far sentences of various lengths
have all the same importance, but in summarization it is
known that short or long sentences should not be part of
summaries; hence, they might not be good candidates for
important atomic topics. We chose to follow an approach
where we first suppose that the distribution of lengths
follows a normal distribution N(m, �), and estimate the
maximum likelihood mean and variance using the set of
documents to be summarized. We then defined the prior pl as

p s length sl ( ) ∝ ( )( )N ; ,μ σ (14)

that is, the length prior is proportional to the density distri-
bution over lengths of sentences. In that way, we give a
higher prior to sentences that are of average length.

Back-porting to LSA approaches. The fact that the QIA
framework relies on a probabilistic theory makes explicit
how normalization can be used for MDS. It also becomes
possible to port these normalization techniques back into the
LSA approaches, thus providing the means for these
approaches to benefit from new normalization schemes
derived from the QIA approach to summarization.

To do this, let us consider the term-sentence matrix A.
According to Equation 7, each column of this matrix corre-
sponds to the representation of the atomic topic of the cor-
responding sentence multiplied by the prior sentence
probability. Hence, we should normalize the ith column of A
so the square of its norm equals to p(si | D) to use the QIA
prior in LSA-based approaches.

Selection Criteria

We have now defined the distribution of atomic topics of
a set of documents. The next step is to define how to select
the sentences that will form the summary. To this end, we
propose to optimize the probability that an atomic topic of a
document is contained in the atomic topics of the summary.
With this view, the summarization task can then be stated as
the following optimization problem:

Find the set of sentences {s1, . . . , sn} such that

S qs s s sn n* = ( )argmax , , , ,1 1… …S D (15)

where Ss sn1, ,… is the subspace spanned by the atomic vectors
associated with sentences s1,. . .,sn, and the probability q(S |
D) is defined by Equations 4 and 10.

This optimization overcomes the limitations of Gong and
Lin (2001) because a sentence can be selected even if it does
not match an SVD atomic topic. It also addresses the limi-
tations of Steinberger and Ježek (2004) because it would
discard similar sentences that do not increase the dimension-
ality of the subspace Ss sn1, ,… .
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As optimizing over a set of sentences is computationally
intractable, we employed two greedy approaches, where
sentences are selected one by one.

Greedy approach 1 (QIA-1). As a first approach, we try at
each step to select the sentence sn* that maximizes the cri-
terion given by Equation 15 if added to an already con-
structed set of sentences s sn1 1* *, ,… − . That is, sn* is given by

s qn
s

s s sn
* * *= ( )−

argmax , , ,S D
1 1…

In practice, we use an equivalent but computationally more
efficient criterion, based on the projection of the vector js,
which is the atomic topic corresponding to the sentence s,
onto the subspace Ŝn−

⊥
1 defined as the orthogonal of Ss sn1 1

* *, ,… −
:

s qn
s
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(16)

Intuitively, we measure the probability that the new
dimension of the subspace brought by the vector js matches
the salient atomic topics of the set of documents D.

Greedy approach 2 (QIA-2). The second approach was not
designed to improve over the previous one, but to allow us to
test whether one of the hypotheses of the QIA framework
holds, namely the fact that if two atomic topic vectors are
contained within a fragment, then the fragment is also about
any atomic topic made of the linear combination of these.

To investigate this, we notice that in Equation 16, the

normalization factor Ŝn s−
⊥ −

1

1
ϕ ensures that the projected

vector Ŝn s−
⊥

1ϕ has a unit norm. By discarding this normal-
ization factor, we modify the criterium so that it discounts
vectors that are not orthogonal to the subspace Sn-1:

s qn
s

n s n s* = ( )( )−
⊥

−
⊥argmax S S D

�

1 1ϕ ϕ (17)

According to the QIA hypothesis, adding js should add up a
new dimension if js does not belong to the subspace Sn-1,
whether js is completely or only partially orthogonal to the
subspace Sn-1.

This is illustrated by Figure 3 where the plane is Sn-1. The
QIA hypothesis states that there is no difference between
choosing j1 or j2, which is enforced by QIA-1. That is, it is
important to choose a vector that expands the subspace in
the right dimension. Unfortunately, this vector cannot be
represented in three dimensions, but the reader can imagine
that both vectors have a fourth component which differs
while the fourth component of the plane is set to 0. Although
both are orthogonal to the plane, the difference in this fourth
dimension is of importance, but not the orthogonality of the

vectors to the plane. In the case of QIA-2, we also take into
account how orthogonal to the plane the vectors are, hence
defining a heuristic criterium that in practice ignores the
QIA fundamental hypothesis. If QIA-2 performs signifi-
cantly better that QIA-1, then the QIA hypothesis is either
false or the chosen representation of the sentences is wrong.

Summary of the QIA Approach

In this section, we described the QIA-based approach to
MDS. The approach is defined by a general criterium (Equa-
tion 15) measuring how a subspace in the topical space,
defined by the extracted sentences, covers the high probabil-
ity density regions of the topical space. To define the topical
density, we use the set of vectors that represent sentences
from the documents to summarize, and we associate with
each a given prior probability (see subsection, Sentence
Prior).

For computational purposes, we defined, based on the
general criterium, a first greedy criterium (QIA-1) that
selects sentences one by one. This criterium was slightly
modified (QIA-2) to investigate whether the QIA framework
hypothesis is invalidated or not.

As a byproduct of our approach, we also discussed how
the prior over sentences can be “back-ported” to the LSA
approaches, namely the rank selection and the prior
over sentences (see subsection, Back-Porting to LSA
Approaches).

Experiments

In this section, we report the experiments conducted to vali-
date our QIA approach. Because we introduced not only a
new criterium, but also a sentence prior and (as described
latter) a series of parameters, we optimize parameters for
both QIA and LSA-based approaches. This allows us to see
to what extent it is the criterium or the new parameters that
affect performance. All experiments can be reproduced
using the DUC document collections and evaluation tools,
and the open-source source code of the QIA project.8

8http://qir.sourceforge.net

FIG. 3. Illustration of the two greedy approaches for QIA-based
summarization.
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From now on, we use model to refer to one of the four
LSA- or two QIA-based approaches. We use system to refer
to a model with a specific set of parameters. In the next
subsection, we define the collection and metrics we used for
our experiments. Then we define our experimental set-up,
which led two sets of results. In the last three subsections,
we report on the optimization of the parameters for the
different models. In the Evaluations on the Held-Out Col-
lection section, we report the final results we obtained with
the optimized models.

Collection and Metrics

We conducted our experiments on the DUC 2005 to 2007
data sets.9 Documents consist of news articles collected
from TREC for DUC 2005 and the AQUAINT corpus for
DUC 2006 and 2007. We were interested in the main task10

of DUC 2007, i.e., providing a summary of no more than
250 words for each topic to answer the associated question.
For a given question, a summary is to be formed on the basis
of a subset of documents to its corresponding topic. Table 1
contains a description of the three datasets.

For each topic, we have three reference summaries pro-
duced by human assessors, which are used for evaluation.
The topic questions in DUC 2005 contain on average one
additional term than those in DUC 2006 and DUC 2007. In
addition, the average number of terms is higher in DUC
2006 than in the two other collections. Moreover, in all
three collections, the average size of sentences containing
question terms (denoted by q in Table 1) is eight to nine
words higher than the average size of sentences not contain-
ing these terms.

To compare the performance of the systems, we used the
ROUGE (Lin, 2004) toolkit (Version 1.5.5) used by the

National Institute of Standards and Technology (NIST) for
performance evaluation. This toolkit measures the quality of
a produced summary by counting the relative number of unit
overlaps with a set of reference summaries—in our case,
those produced by three human assessors. The most
employed ROUGE measure is ROUGE-n defined as:

ROUGE − =
( )

( )
∈∈

∈

∑∑
∑

n

Count n

Count n

match gram
n CC

gram
n CC

gram

gram

R

∈∈
∑

R

where R is the set of reference summaries, n is the length of
the n-gram, Countmatch(ngram) is the number of n-grams
co-occurring in a produced summary and the reference sum-
maries and Count(ngram) is the number of n-grams in the
reference summaries. In practice, the overlapping units used
in DUC evaluations are either unigrams or bigrams (i.e.,
n ∈ {1,2}). ROUGE-1 score has been shown to mostly cor-
relate with human judgments (Lin & Hovy, 2003). Other
evaluation metrics implemented in ROUGE include
ROUGE-L, ROUGE-W, and ROUGE-SU4. ROUGE-L
considers the longest common subsequence between the
produced summary and the reference summaries, whereas
ROUGE-W is a weighted version of the latter with usually
W = 1.2. Finally, ROUGE-SU4 uses bi-grams with a
maximum distance of four between the two words defining
the bi-gram.

The ROUGE toolkit generates recall, precision, and
F-measure scores for all the above ROUGE metrics. In this
paper, we use the average F-measure scores for ROUGE-2
and ROUGE-SU4 as it was used in DUC competitions.

Experimental Setup

Documents to summarize were preprocessed by first seg-
menting sentences using a script11 provided by NIST for
DUC. All terms were converted to lowercase, digits were
mapped to a single digit token, and non alphanumeric char-
acters were suppressed. We also used a stoplist to remove
very frequent words.12

We conducted a number of experiments aimed at evalu-
ating how our proposed models performed in comparison to
all the existing LSA-based models to summarization we
identified, and evaluating the impact of different parameters
on those methods. The models that we compared with
are the following (we use the name of the first author to
characterize each model):

The Gong and Lin (2001) model was the first LSA-based
approach for text summarization, and is described by Equa-
tion 8; the Murray, Renals, and Carletta (2005) model is
based on a modification of the Gong and Lin (2001) model,
where atomic topics are sampled according to the magnitude

9http://www-nlpir.nist.gov/projects/duc/data.html
10We ignored the short summary task (less than 100 words), which was

abandoned in 2008 because of its difficulty for extractive summarization
methods.

11http://duc.nist.gov/duc2004/software/duc2003.breakSent.tar.gz
12http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-

list/english.stop

TABLE 1. Dataset characteristics.

Data source

DUC 2005 DUC 2006 DUC 2007

TREC AQUAINT AQUAINT

Task - - Main
# of topics 50 50 45
# of relevant 25-50 25 25
docs. per topic
Avg. # of keywords 3.94 4.34 3.71
per topic
Avg. question size 12.42 11.26 11.35
(in words)
Avg. sentence size (q) 28.11 29.3 28.23
(in words) (-) 19.97 21.47 20.66
Summary length 250 250 250
(in words)
# of participants 31 34 31
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of their corresponding eigenvalues, i.e., the number of sen-
tences selected with respect to one atomic topic is propor-
tional to its corresponding eigenvalue.

We used the criterium proposed by Steinberger and Ježek
(2004) approach (Equation 9).

We used the Cross method described in the work of
Ozsoy, Cicekli, and Alpaslan (2010), which is a variation of
the model of Steinberger and Jezek. The authors proposed to
first compute the mean value of a sentence to belong to a
topic (row of matrix VT), and then set to zero all the values
below this mean value, hence defining a threshold below
which a sentence is not at all considered to be discussing an
atomic topic before following the approach of Steinberger
and Ježek.

In all these models, the parameter to set is the rank of the
decomposition, i.e., the rank of the density, which corre-
sponds to the first optimization we make (the Rank Selection
subsection). However, we go further and experiment with a
range of parameters summarised in Table 2. Due to the high
number of parameters, we optimise their values for each
model following three steps:

1. In the Spectral Decomposition and QIA subsection, we
discussed the problem of noise and its relationship with
the selection of an appropriate rank of the selection. A
rank selection method is needed when computing the
density q(·|D), or the subspace Sn. We experimented with
the following strategies:
None: (Only for subspaces) No rank selection was
applied.
Mean: We selected the eigenvalues above the average of
the eigenvalues.
Ratio: We selected the eigenvalues whose ratio with the
highest eigenvalue was above a given threshold.
For computational complexity reasons, we also limited to
200 the maximum rank of the quantum density.

2. Following Piwowarski et al. (2010), the topical space was
approximated by the term space where each dimension
corresponds to uni-grams, bi-grams, or either. Further, in
a term space, various weighting schemes (e.g., term
frequency-inverse document frequency [tf-idf]) exist,

and we select for each model the best performing one in
the Sentence Representation subsection below.

3. We chose the mixture weights as defined in the Sentence
Prior subsection.

To avoid overfitting, we chose the parameters using two
DUC collections (e.g., 2005 and 2007), evaluating on the
heldout one (e.g., 2006) only at the end of the three steps.
The evaluation performed on the heldout collection is pre-
sented in the Evaluations on the Held-Out Collection
section.

At each step, and for each model, to select a set of
parameters among P1,. . .,Pp, we proceeded as follows. For
each parameter set Pi, we performed a paired one-sided t
test on the difference of performance (for both the
ROUGE-2 and ROUGE-SU4 metrics) with all the Pj, i � j
to check whether Pi performed worse than Pj. We then
computed the minimum pi of the p-values of the t tests for
all j � i. The value pi represents the minimum probability
to wrongly discard Pi in favor of another set of parameters.
The selected sets are those for which the probability pi of
wrongly discarding are at least half of the highest of these
probabilities, that is those for which pi/p � 0.5 where
p = maxipi. For example, if for a given set of parameters,
the maximum p-value is 0.7, then the probability of being
wrong by selecting another approach would be 0.7 (this
number was chosen empirically on preliminary experi-
ments, and does only select a few, typically one system),
and we would select all the set of parameters such that the
minimum probability of being wrong is over 0.35. At the
end of the last step, to select only one system for each
model, we selected the parameters with respect to the
ROUGE-2 metric and chose only the one with the highest
minimum p-value.

Note that for each of the systems, a summary is formed
by first ordering sentences with respect to their scores (e.g.,
quantum probabilities). We take the highest scored sentence
as the lead and add other high scored sentences to the
summary using a Traveling Salesman (TS) formulation
(Reinelt, 1994). This selection is done in two steps; first, we

TABLE 2. Summary of the different parameters used in the experiments for the different LSA- and QIA-based models.

Name Possible values

Model The model used among QIA (Greedy-1 and Greedy-2), Gong & Lin (2001), Murray et al. (2005), Steinberger &
Ježek (2004), and Ozsoy et al. (2010)

Density Rank How the rank of the density was selected
Subspace Rank How the rank of the subspace was selected (only for QIA-based approaches)
Indexed units Uses unigrams, bigrams, or both. In the case of bigrams, they can be strict or not (i.e., separated by stopped words)
Weighting scheme term frequency (tf), and in the case of unigram indexed units, term frequency—inverse document frequency (tf-idf) or

normalized (zero mean and unit variance)
Part-of-speech (POS) filter Restrict to noun/verbs part-of-speech
(NN,NNS,NP and NPS categories) or not.
Prior weights a0, ad, al and at Weights for the document (a0), length (al), topic (at) and the document (ad) priors as defined in Equation 10. By

default, a0 = 1 and the remaining weights are set to 0.

Note. Values in bold were those used by default and correspond to the different LSA approaches parameters in the literature. LSA = latent semantic
analysis; QIA = quantum information access.
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compute a similarity measure, tij, between some pairs of
sentences (si,sj) in the top 15 scored sentences

∀( ) ∈ = −s s t
n

n n
i j ij

ij

ii jj

, ;T15 1

where nij is the number of common terms in si and sj. For
sentences in the same document this number is doubled. In
the second step, we determine an ordering that minimizes
the sum of the similarities between adjacent sentences. Sen-
tences are added with the final summary length constraint of
250 words. This selection technique was used by one of the
best performing systems at DUC 2006 (Conroy, Schlesinger,
O’Leary, & Goldstein, 2006).

Rank Selection

The first series of experiments investigated the effect of
rank selection on the different approaches. We experi-
mented with the three different selection strategies
described in the Experimental Setup subection. In the case
of density, for the ratio strategy, we experimented with
values from 0.2–0.8 by steps of 0.1. The corresponding
rank values are shown in Figure 4 (note that rank was
limited to 200 for computational reasons—which is rea-
sonable given that most of the chosen ranks are already

below this limit). For the maximum strategy, we used the
values 1, 5, 10, 25, 50, and 100.

Figures 5 and 6 report the average difference between the
given settings and the mean performance for a topic over all
the model and parameter settings, for the maximum
(Figure 5) and ratio (Figure 6) rank selection strategies.
Summary of values are reported through boxplots thus
showing five important pieces of information namely the
minimum, first, second (median), third, and maximum quar-
tiles. Overall, we observe that rank reduction is beneficial
because high ranks (ratio 0.2 or max 100) do not perform
well whatever the model. We also notice that the QIA-based
approach perform better in median, whatever the parameter
settings. We can then distinguish three different behaviors
depending on the model.

First, the Steinberger and Ozsoy models are those for
which rank selection has the most important effect. In par-
ticular, low ranks do not perform well and high ranks are
even worse. This is makes sense because with low ranks
only sentences corresponding to the same atomic topics are
selected, whereas with high ranks all sentence scores are
close to 1; thus, selection has more to do with random noise
than with the topicality of the sentences.

Second, for the Gong and Lin (2001) and Murray models,
we can see that low rank selection is not a good strategy, for
the same reasons as for Steinberger and Ozsoy models. The
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FIG. 4. Boxplots of the final rank for the different ratio selections.
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performance of Gong and Lin’s (2001) model also decrea-
ses with high ranks, but Murray’s is not affected by this,
which is normal because Murray modified the Gong and
Lin’s (2001) algorithm so that more important sentences
(higher eigenvalues) are selected more often within the

first extracted sentences: Hence, sentences associated with
atomic topics whose eigenvalue is low are selected much
latter.

Finally, the two QIA-based approaches work in general
better with low ranks, e.g., close to the minimum 1, which

Max 100

Max 50

Max 25

Max 10

Max 5

Max 1

Max 100

Max 50

Max 25

Max 10

Max 5

Max 1

Max 100

Max 50

Max 25

Max 10

Max 5

Max 1

Max 100

Max 50

Max 25

Max 10

Max 5

Max 1

Max 100

Max 50

Max 25

Max 10

Max 5

Max 1

Max 100

Max 50

Max 25

Max 10

Max 5

Max 1

−
0.

10

−
0.

05

0.
00

0.
05

Q
IA

−
1

Q
IA

−
2

G
on

g
M

ur
ra

y
S

te
in

be
rg

er
O

zs
oy

FIG. 5. Boxplots of the difference with the mean value of each topic for
the ROUGE-2 metric for the maximum rank selection method.
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FIG. 6. Boxplots of the difference with the mean value of each topic for
the ROUGE-2 metric for the ratio rank selection method.
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would indicate that in most cases, there is just one main
topic to be summarized; the sentences should be selected so
as to cover as much of the topic as possible.

For the QIA-based approaches, we are also interested in
the subspace rank selection. Results are reported in
Figure 7. We observe that the QIA models are not affected
much by the subspace rank selection—given the variance
of the results, the subspace rank should be chosen depend-
ing on the other parameters. As shown in the final evalua-
tion, the rank selection that was chosen for each QIA model
tends to preserve most of the dimensions of the subspace
(ratio � 0.5), which means that it is better to preserve the
full subspace covered by all the sentences of the extracted
summary.

Sentence Representation

In the second set of experiments, we looked at the repre-
sentation of sentences, i.e., by changing the vector space to
which vectors representing the sentences belong. More pre-
cisely, we varied the indexed units and the weighting scheme.

For the indexed units, we used unigrams, and motivated
by the bi-gram based summarization system that performed
best at DUC 2006 (Jagarlamudi, Pingali, & Varma, 2006),
we also experimented with bi-grams and a combination of
both unigrams and bi-grams. For bi-grams, we either
selected a bi-gram of words separated by stop words or not
(strict bi-grams). The latter was used because intuitively
bi-grams are usually important if their constituents are close
together. Following the findings of Ozsoy in LSA-based
summarization (Ozsoy et al., 2010), we also experimented
by restricting the indexed units to be nouns or named entities
(categories NN and NP) using a part-of-speech tagger
(Schmid, 1994). Results are reported in Figures 8 (Gong &
Lin, 2001; Murray et al., 2005), 9 (Steinberger & Ježek,
2004; Ozsoy et al., 2010), and 10 (QIA) as boxplots of the
difference between the evaluated system and the mean per-
formance value of all systems for the ROUGE-2 metric
because the ROUGE-SU4 metric showed the same pattern
of performance.

In the case of tf-based approaches and unigram index
terms (or uni- and bi-gram index terms), restricting to noun
part-of-speech was beneficial to all systems, which matches
the conclusions drawn in Oszoy et al. (2010), and is intuitive
because this filters out much of the unnecessary information
when building up summaries.

Among the weighting schemes, tf (for LSA-based
models) and tf-idf (for QIA) worked the best. Term fre-
quency has been reportedly a good performing weighting
scheme for extractive summarization because the idf infor-
mation is not that important within a set of topic-biased
documents, so it is interesting that using idf information
works better for the two QIA-based models.

A key difference, especially with low-rank densities,
between the QIA and LSA-based models is the fact that with
the QIA models a subspace is built that corresponds to the
constructed summary. Using a tf scheme can dramatically
change the shape of this subspace. Indeed, consider for
example the pseudosentences, s1 =the sentence, s2 =the para-
graph, and s3 =a paragraph. With a tf-idf approach, the sub-
space corresponding to {s1, s2} would be very close to the
subspace {s1, s3}, whereas it would not be the case with the
tf weighting scheme.

One way to verify the above hypothesis about the impor-
tance of the defined subspaces in QIA is to look at the
difference of performance when using part-of-speech (POS)
filtering with the tf or tf-idf weighting schemes. Because
POS filters out units with low idf more often, the difference
in performance should be of greater magnitude with tf; this
corresponds to what we observe in our results (with the
ROUGE-2 metric, the mean absolute difference between the
QIA and LSA approaches is 0.17 for tf vs 0.15 for tf-idf).
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FIG. 7. Boxplots of the difference with the mean value of each topic for
the ROUGE-2 metric for the different subspace rank selection strategies,
for the QIA-based models.
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As a final note, the representation of sentences is an
open topic in the QIA framework. Quantum formalism
allows the possibility to use the complex field instead of
the real field as used in this study, hence offering another
degree of freedom of the representation because each

component of the vector could be a complex number.
However, it is difficult to know at this point how the
complex field can be leveraged, we refer the readers to
Zuccon, Piwowarski & Azzopardi (2011) for a short dis-
cussion on this topic.
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FIG. 8. Gong and Lin (2001) and Murray et al. (2005)—Boxplots of the
difference with the mean value of each topic for the ROUGE-2 metric for
different sentence representation schemes (strict bi-gram is indicated by a
“!”).
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FIG. 9. Steinberger and Ježek (2004) and Ozsoy et al. (2010)—Boxplots
of the difference with the mean value of each topic for the ROUGE-2 metric
for different sentence representation schemes (strict bi-gram is indicated by
a “!”)
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Prior Sentence Distribution

In the third set of experiments, we investigated the weight
in the mixture defined in Equation 10, that is with a0

(uniform), ad (document), al (length), and at (topic). We

varied the values of each parameter within the set 0, 0.25,
0.50 and 1, ensuring that weights were summing up to 1.

We first run an analysis of variance (ANOVA) on each
model to look at the effect of each parameter. The results did
not vary depending on the model. The parameters that had
the most important effect are document, topic, and length
priors (in order of significance). We found a significative
interaction between topic on the one hand, and document or
length on the other hand, which in practice means that if we
set the topic prior, then document and length prior influence
the performance independently.

Results are reported in Figures 11 (Gong & Lin, 2001;
Murray et al., 2005), 12 (Steinberger & Ježek, 2004; Ozsoy
et al., 2010), and 13 (QIA) as boxplots of the difference
between the evaluated system and the mean performance
value of all systems for the ROUGE-2 metric.

First, we can see that LSA-based approaches were more
affected by the change in mixture weights that the QIA-
based ones, so it is an important parameter for these
approaches only—hence most of the conclusions here apply
to LSA-based models.

When we look at the different classes of models, we can
distinguish three more detailed effects of the priors:

1. Gong/Murray (LSA-I) performs better with topic prior
(at = 0.25) and length prior (ad = 0.25), but no document
prior.

2. Steinberger/Ozsoy (LSA-II) performs better with topic
prior (at = 0.25) and document prior (ad = 0.25), but no
length prior.

3. QIA performs better with no topic prior. In particular, the
uniform prior did perform well for both QIA-1 and
QIA-2.

From these observations, we can state the following.
First, all LSA-based approaches need to have some weight
on sentences containing topic terms. Second, QIA-based
models are able to implicitly capture the topic at hand from
the documents provided for summarization and are less sen-
sitive to varying documents or sentence lengths. This shows
that when the documents to be summarized are on-topic, as
is the case in the DUC test collections, there is no need for
the QIA approaches to use any information about the topic
that was used to select those documents.

Evaluations on the Held-Out Collection

The last set of experiments was conducted to evaluate the
optimized models (i.e., the different models where the
parameters were selected as described in the Experimental
Setup subsection) on the held-out DUC corpus. Thus, the
results reflect the results we would have obtained on one
DUC collection, when the summaries of the two others are
available for parameter tuning.

We also compared the results with two graph-based
models (symmetric nonnegative matrix factorization
[SNMF] and LexRank); two baseline systems, namely lead
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FIG. 11. Boxplots of the difference with the mean value of each topic for
the ROUGE-2 metric for different mixture settings. The letters d, l, and t are
for document, length and topic bias weights, respectively.
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FIG. 12. Boxplots of the difference with the mean value of each topic for
the ROUGE-2 metric for different mixture settings. The letters d, l, and t are
for document, length and topic bias weights, respectively.
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and random; and the best competing summarization system
in DUC 2005, DUC 2006, and DUC 2007 (as denoted in
Best@DUC).

The lead baseline returns all the first sentences (up to 250
words) in the most recent document for each topic and the
random baseline selects sentences randomly.

SNMF conducts symmetric nonnegative matrix factor-
ization on a sentence–sentence similarity matrix (Wang
et al., 2008); the hyperparameter l for computing sentence
scores was fixed to 0.7, which gave best results on all three
DUC collections.

LexRank defines a random walk model on top of a graph
where sentences to be summarized define its nodes and the
edges represent the similarity measures between the nodes
of the graph. Sentences are then scored by the expected
probability of a random walker visiting each sentence
(Erkan & Radev, 2004). Here, the cosine threshold t was was
fixed to 0.1 leading to the best results with this approach.

The selected systems for each model are reported in
Table 4, the corresponding results in Table 3, and the pair-
wise t-tests in Table 5. We can see that our results match the
main conclusion drawn in the previous sections, although
parameters vary slightly depending on the specific corpora
on which they were optimized. More precisely, for LSA-
based approaches, tf and unigram/strict bi-grams with POS
filtering perform the best, and including the different priors
was important. The parameters are quite different for QIA-
based models, where a tf-idf weighting scheme on unigrams,
with uniform prior over sentences, perform the best in
general.

From a performance point of view, we improved sub-
stantially all the LSA-based models by selecting appropri-
ate indexing units (in particular, using part-of-speech
tagging, as suggested in Ozsoy et al. (2010) and using
priors on sentences in the document to be summarized as
suggested by the QIA approach. Those priors (as shown in
Table 4) are biased towards the topic and the length of the
sentences.

The QIA-2 model is slightly superior to the QIA-1 except
on DUC 2007. This shows that the QIA main hypothesis—
that any linear combination of atomic topics present in a
document is also a topic of the document—as discussed in
the Selection Criteria subsection, does hold in the case of
summarization, as the QIA-1 approach performed well in
comparison with QIA-2.

In all cases, we can observe that the QIA-based models
perform the best for both metrics. The performance of both
QIA-based models are over those of the best systems in
DUC for the corresponding years (not significant except for
ROUGE-SU4 in DUC 2005 and 2007); in particular, this
means that in 2007 QIA-based models would have been
ranked first because the data from 2005 and 2006 were
available.

Finally, QIA-based models are in most cases performing
better (significantly in 2007 for LexRank and 2005–2007 for
SNMF) than two state-of-the-art extractive summarization
methods, namely SNMF and LexRank, thus showing that
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FIG. 13. Boxplots of the difference with the mean value of each topic for
the ROUGE-2 metric for different mixture settings. The letters d, l, and t are
for document, length, and topic bias weights, respectively.
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the QIA framework is a very promising approach for extrac-
tive summarization.

Summary

In summary, our experimental results show that when
summarization is performed on a set of relevant documents
to a given topic (topic-oriented documents), as is the case

with the DUC collections, QIA-based models are able to
implicitly capture the topics covered by the set of documents
and are less sensitive to varying documents or sentence
lengths. This is an important result as it means that the
similarity estimations between sentences and the topic, per-
formed by most systems in these competitions, is not
required by the QIA-based models. Indeed, the latter
uncover automatically, without relying explicitly on the

TABLE 3. Final evaluation on the held-out corpus.

Metric DUC 2005 DUC 2006 DUC 2007

Model / DUC ROUGE-2 ROUGE-SU4 ROUGE-2 ROUGE-SU4 ROUGE-2 ROUGE-SU4

Best@DUC 0.072 0.133 0.095 0.155 0.123 0.175
Average@DUC 0.060 0.115 0.075 0.132 0.096 0.150
Lead 0.043 0.093 0.053 0.104 0.065 0.113
Random 0.041 0.091 0.049 0.101 0.060 0.110
LexRank 0.076 0.136 0.093 0.150 0.120 0.172
SNMF 0.060 0.121 0.085 0.140 0.110 0.158
Gong & Lin (2001)a 0.057 0.112 0.076 0.136 0.100 0.155
Murray et al. (2005)a 0.056 0.109 0.076 0.135 0.104 0.159
Ozsoy et al. (2010)a 0.050 0.099 0.072 0.128 0.090 0.140
Steinberger & Ježek (2004)a 0.050 0.099 0.072 0.128 0.089 0.140
QIA-1a 0.062 0.117 0.089 0.147 0.123 0.181
QIA-2a 0.068 0.124 0.093 0.151 0.116 0.175
Gong & Lin (2001)b 0.062 0.121 0.083 0.143 0.112 0.171
Murray et al. (2005)b 0.063 0.122 0.083 0.143 0.113 0.172
Ozsoy et al. (2010)b 0.077 0.137 0.072 0.128 0.092 0.146
Steinberger & Ježek (2004)b 0.077 0.137 0.081 0.143 0.091 0.146
QIA-1b 0.077 0.135 0.091 0.152 0.127 0.185
QIA-2b 0.080 0.141 0.097 0.159 0.118 0.179
Gong & Lin (2001)c 0.072 0.133 0.087 0.148 0.118 0.180
Murray et al. (2005)c 0.073 0.135 0.086 0.147 0.120 0.181
Ozsoy et al. (2010)c 0.071 0.133 0.085 0.145 0.111 0.173
Steinberger & Ježek (2004)c 0.071 0.133 0.081 0.144 0.111 0.169
QIA-1c 0.077 0.135 0.091 0.151 0.127 0.185
QIA-2c 0.080 0.141 0.097 0.159 0.125 0.183

Note. The first three rows give the performance of the best system in DUC, the random and lead strategies, respectively. There are three series of results
for each LSA and QIA based approaches: (a) after the rank selection, (b) after the weighting scheme selection, and (c) after the mixture weights selection.
Best performances are indicated by boldface.

TABLE 4. Parameters for the different models whose performance is shown in Table 2.

Density Subspace Weighting Indexed unit POS a0 ad al at

Gong & Lin (2001) 2005 Max 50 tf Strict bigram y 0.25 0.50 0.25
2006 Max 5 tf Unigram y 0.50 0.25 0.25
2007 Max 50 tf Strict bigram y 0.25 0.50 0.25

Murray et al. (2005) 2005 Max 50 tf Strict bigram y 0.50 0.25 0.25
2006 Max 10 tf Unigram y 0.50 0.25 0.25
2007 Max 50 tf Strict bigram y 0.50 0.25 0.25

Ozsoy et al. (2010) 2005 Max 1 tf Unigram y 0.75 0.25
2006 Max 10 tf Unigram y 0.25 0.25 0.25 0.25
2007 Max 10 tf Strict bigram y 0.25 0.50 0.25

Steinberger & Ježek (2004) 2005 Max 1 tf Unigram y 0.75 0.25
2006 Max 1 tf Unigram y 1.00
2007 Max 10 tf Strict bigram y 0.25 0.25 0.25 0.25

QIA-1 2005 Max 1 Ratio 0.75 tf-idf Unigram n 1.00
2006 Ratio 0.8 Mean tf-idf Unigram n 0.25 0.25 0.25 0.25
2007 Ratio 0.8 Ratio 0.75 tf-idf Unigram n 1.00

QIA-2 2005 Max 1 None tf-idf Unigram n 1.00
2006 Ratio 0.8 Ratio 0.25 tf-idf Unigram n 0.50 0.50
2007 Ratio 0.5 Ratio 0.25 tf Unigram n 0.50 0.25 0.25

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2012 883
DOI: 10.1002/asi



DUC-provided topic at hand, the important atomic topics
covered by a set of topic-oriented documents.

More precisely, we showed that even though LSA- and
QIA-based techniques are based on spectral decomposi-
tion, these models differ in the choice of their optimal
parameters. LSA-based approaches benefit from the
various preprocessing steps (part-of-speech, bi-grams,
topic and length bias, rank selection) whereas QIA-based
approaches rely on the standard IR tf-idf scheme and a
few (typically one) atomic topics that represent the
important topics of the documents to summarize. This
difference is due to the criteria used to select sentences.
LSA-based models do not consider the topical space
covered by a set of extracted sentences, whereas QIA-
based models do.

This leads to an important conclusion. The topical space,
in the case of summarization, resembles more a tf-idf term
space than a tf term space, which can be linked to the QIA
hypothesis on the linear combination of atomic topics. Such
a linear combination makes more sense when less important

terms (i.e., low idf) do not influence the result of the linear
combination much.

Finally, we showed that QIA-based models performed
better (significantly in one DUC collection) than the best
systems that competed in the DUC competitions and better
than two state-of-the-art extractive models, namely SNMF
and LexRank. For illustration purposes, in the Appendix we
provide an example of the summary extracted by the differ-
ent systems where the QIA framework is shown to correctly
identify and extract sentences corresponding to the most
important topics.

Conclusion

In this article, we have described an approach for multi-
document summarization (MDS) motivated by the quantum
information access (QIA) framework, which in turn is based
on quantum probability theory. The results we found are of
great importance, both from a theoretical and practical point
of view.

TABLE 5. Pairwise t tests between all selected systems.

b l s G M O S Q1 Q2 b l s G M O S Q1 Q2

ROUGE-2 ROUGE-SU4

2005

best@DUC *** + + + ***
LexRank *** *** * + + + *** *** * + + + +
SNMF
Gong & Lin (2001) *** + + + *** + +
Murray et al. (2005) + *** + + + + *** + + +
Ozsoy et al. (2010) *** + ***
Steinberger & Ježek (2004) *** + ***
QIA-1 + + *** + + * * + *** + + + +
QIA-2 ** + *** ** ** ** ** * ** + *** * * * * **

2006

best@DUC *** ** * ** *** ** + *** ** * ** *** ** +
LexRank * * * * ** + *** + + * *
SNMF + +
Gong & Lin (2001) + + + * ** + + +
Murray et al. (2005) + + + ** + +
Ozsoy et al. (2010) + ** +
Steinberger & Ježek (2004) +
QIA-1 + + * *** *** + *** + ** ** **
QIA-2 + + + ** *** *** * * + + ** + + * * +

2007

best@DUC *** ** + + ** ** *** *** + +
LexRank * + + * * ** + +
SNMF
Gong & Lin (2001) * + + + * *** * *
Murray et al. (2005) * + * * * ** *** + * *
Ozsoy et al. (2010) + *
Steinberger & Ježek (2004) + * +
QIA-1 + * ** ** * *** *** + *** *** *** * + ** ** +
QIA-2 + * ** * * ** ** *** *** *** + + ** **

Note. The + sign means that system (row) performed better than another (column), but not significantly. The number of stars varies between one and three
and corresponds to significance levels of 0.05, 0.01, and 0.001, respectively. For space reasons, we use only one letter in the columns to denote the different
systems (the order is the same as for the rows).
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From a theoretical point of view, we showed that it is
possible to interpret in a principled and (quantum) probabi-
listic way the successful singular value decomposition
(LSA) approaches to summarization and, more interestingly,
to identify their limitations from a purely quantum probabi-
listic theoretic interpretation. So far, only intuitive argu-
ments have been put forward.

This theoretic analysis brought two important results.
First, we showed that it is possible to modify LSA-based
approaches so that they benefit from the QIA framework,
leading in practice to a much improved performance in the
DUC collection with respect to the most important metrics
(ROUGE-2 and ROUGE-SU4). Second, an analysis of the
limitations of LSA-based approaches provided a new and
more natural QIA-based criterium to build summaries. This
criterium provides a global measure of the quality of the
summary by measuring to what extent the topics of the
selected sentences cover the important topics of the docu-
ments to be summarized. This is in contrast to LSA-based
criteria, which consider sentences in isolation.

Extensive experiments show that the theoretic insights
translate into a difference in performance. The QIA-based
approach not only performs much better than previous LSA
approaches, but is also competitive with state-of-the-art
summarization approaches (SNMF and LexRank). Indeed, it
performed better than the best-performing systems in DUC
2005, DUC 2006, and DUC 2007.

Another finding concerns the validation of one of the
fundamental hypothesis of the QIA framework, which
states that if two atomic topics are present in a document,
then any linear combination of these atomic topics in the
topical vector space is also an atomic topic of the docu-
ment. This hypothesis has not been verified so far within
the QIA framework. This is bringing us new insights into
the potential of quantum theory and on the importance of
choosing the right representation, i.e., the topical space in
this study, as well as a new momentum to explore the appli-
cation of the QIA framework in information access and
related areas.

It is our belief that the potential of the QIA goes beyond
what we presented here. A main extension to this work is to
use kernels that have been useful in many machine learning
algorithms relying on inner products like support vector
machines (Schölkopf & Smola, 2002). Indeed, support
vector machines, by defining how to compute an inner
product in a vector space without explicitly computing the
vectors, allow work in higher (possibly infinite) dimensional
Hilbert spaces. For instance, this would allow work in
spaces more complex than unigram/bi-gram term spaces,
and the integration of semantic and syntactic information for
summarization purposes, thus exploring further the question
of what the topical space should look like. An interesting
possibility would be to provide the means to build sentence
bi-gram models, thus addressing a longstanding problem in
text summarization—how to select the sentence that is the
most likely to follow another one in the summary. This is
part of our future work.

As a final remark, this is the first time that the QIA
framework is being used for tasks other than ad hoc IR
(e.g., Piwowarski et al., 2010), and hence shows the poten-
tial of QIA for information access tasks, and more gener-
ally of using the quantum probability theory outside
physics. Without quantum formalism and its link between
geometry as used in IR as advocated by van Rijsbergen
(2004) and Widdows (2004) together with the QIA frame-
work methodology, it would have been impossible to give a
quantum probabilistic interpretation of previous LSA-based
approaches and propose a new and better criterion for sen-
tence selection in extractive summarization.
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Appendix

Summary Extracts (Topic 385—DUC 2005)
Topic 385: What is the current status of research and devel-
opment on electric automobiles? What are the positive and
negative factors for their usage? Which companies are
involved in their development?

Apart from the human summary, all the summaries are
extractive. They were selected as an example of when QIA-
1/2 performs better than all other methods. The human
summary is provided only for reference.

In the human summary, we can identify the following
topics regarding electric cars: future of cars, the efforts, the
legislation, and the ecological advantages and difficulty to
build electric cars. We can make the following observations:

• LexRank and SNMF both fail to identify several topics: future of
the car (SNMF), legislation (both), difficulty (LexRank).

• Gong and Lin (2001) and Murray et al. (005) miss some topics,
probably because of the hard clustering that characterizes those
methods (e.g., the difficulty of making electric cars).

• Ozsoy et al. (2010) and Steinberger and Ježek (2004) suffer from
the same problem of sampling again and again the same topics
(efforts).

• The QIA approach succeeds in extracting sentences covering the
major topics.

886 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2012
DOI: 10.1002/asi



Human Summary

Huge research efforts in viable electric cars has been going on the
past several years. Carmakers around the world see electric vehicles
as the only available technology to provide immediate pollution-free
driving. A sense of urgency was prompted by the California legis-
lature’s calling for 2% of car manufacturers’ sales to be of “zero-
emission vehicles” from 1998, rising to 10% by the 21st century. Up
to twelve other states are seriously considering adopting similar
requirements. The electric car is considered by many to be cheap to
run, virtually silent, nonpolluting, and easy to drive, providing good
acceleration and reasonable highway cruising. Nearly all major car
manufacturers—GM, Ford, Chrysler, Daimler-Benz, Renault,
Peugot, Ford, VW, and BMW have made battery-powered conver-
sions of their smaller gasoline-powered cars and delivery vehicles
and are preparing plants for increased production. GM unveiled its
prototype of a futuristic electric car developed from the Impact
model. Severe disadvantages in manufacturing electric cars at this
time are delaying extensive production. They are low on power,
short of range, and expensive to make. The cost of high technology
required to eliminate these problems will make them highly expen-
sive to purchase. The biggest problem is the absence of super-
efficient batteries. The industry must use cheap-lead acid batteries,
which are extremely heavy and take up the rear seat space. GM,
Ford, Chrysler, and federal agencies are collaborating to establish
new super battery technology. For the immediate future the hybrid
car, using both electricity and gasoline, is showing the most promise.

LexRank

A prototype of the electric car that BMW intends to sell in the US
in the second half of the 1990s is on display at the Los Angeles
motor show, which opened to the public this week. Environmen-
talists keep on saying the battery-electric is the car of the future.
Britain leads the world in the use of battery-electrics. America’s
big three car makers—General Motors, Ford and Chrysler—are to
co-operate much more closely in the development of electronic
vehicles. Most of the weight is accounted for by the lead content.
Electric cars are as old as motoring—they have been around for
100 years. This would feed current via the batteries to an electric
motor driving the wheels. Automobiles in the future are going to be
driven by fuel cells. Half the funds for the project are to be pro-
vided by the US energy department. Electric cars are the only
vehicles to meet such standards so far. We have to look at alterna-
tives like electric vehicles. Even the most advanced forms of
battery now at the research and development stage would only
improve the situation by a factor of three, according to the report.
GM said it uses about a third of the energy of a conventional car.
“It’s consistent with the kinds of emissions standards that we are
developing for the future.” GM is not the only company working on
electric vehicles. Ford Motor Co. is developing its own electric-
powered van.

SNMF

The EV industry’s development in Europe has serious implications
for component suppliers. While the US automobile industry
scrambles to meet 1998 deadlines to put electric vehicles on the
market, controversy about the environmental benefits and commer-
cial viability of battery-operated cars is mounting. Despite the fact
that General Motors is already preparing a plant to produce the

Impact, which GM intends to be the first electric car in volume
production, GM, Ford and Chrysler collectively insist that other
states do not have California’s air pollution problems. Unlike elec-
tric vehicles that use exotic nickel-iron or sodium-sulfur batteries
as power sources, the Impact uses lead-acid batteries, whose 870
pounds account for about 30% of the car’s total weight. GM engi-
neers borrowed from a prototype GM solar vehicle, the Sunraycer,
to give the Impact a lightweight, aerodynamic design and improve-
ments in motor and controls that partly account for the car’s range,
speed and acceleration: 0 to 60 m.p.h. in 8 seconds. A GM video
showed the Impact out-accelerating Mazda Miata and Nissan
300ZX sports cars. In 1991, GM’s electric vehicle programme
directors implied, if not specifically stated, that cars based on the
100 mph-plus, purpose-built and aluminium-bodied Impact would
be rolling out of a former Buick plant at Lansing, Michigan, well
before the 1998 deadline. Ken Baker, vice-president of GM’s
research and development centre, insists that GM wants electric
vehicles to be a marketplace success. Americans pay little for petrol
and the economic incentive towards electric cars is zero.

Gong and Lin (2001)

The Electric Power Research Institute has worked with both GM
and Chrysler to develop electric-powered vans for eventual produc-
tion. America’s big three car makers—General Motors, Ford and
Chrysler—are to co-operate much more closely in the development
of electronic vehicles. Ken Baker, vice-president of GM’s research
and development centre, insists that GM wants electric vehicles to
be a marketplace success. GM, Ford, Chrysler, electric utilities and
government agencies, formed several years ago into the Advanced
Battary Consortium, have awarded research and development con-
tracts to five other battery makers pursuing alternative technolo-
gies. At the same time, the state Air Resources Board is poised to
require automobile companies beginning in 1994 to begin selling a
new category of low emitting vehicles that are twice as clean as the
cleanest new gasoline cars on the road. Volkswagen will start
production of its city car, the Chico, in 1995, and many other
manufacturers have similar projects in development. It has
attracted attention with the improvements it has made to a proton
exchange membrane fuel cell pioneered by General Electric of the
US. In that, it differs from other electrical vehicles under develop-
ment, which are essentially converted delivery vans intended for
commercial fleets. It required not only the development of new
alloys with the required crash protection properties, but also new
production processes. They will be confined mainly to city centres
and could be the only kind of car allowed in the most environmen-
tally sensitive areas.

Murray et al. (2005)

The Electric Power Research Institute has worked with both GM
and Chrysler to develop electric-powered vans for eventual produc-
tion. America’s big three car makers—General Motors, Ford and
Chrysler—are to co-operate much more closely in the development
of electronic vehicles. Ken Baker, vice-president of GM’s research
and development centre, insists that GM wants electric vehicles to
be a marketplace success. GM, Ford, Chrysler, electric utilities and
government agencies, formed several years ago into the Advanced
Battary Consortium, have awarded research and development con-
tracts to five other battery makers pursuing alternative technolo-
gies. At the same time, the state Air Resources Board is poised to
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require automobile companies beginning in 1994 to begin selling a
new category of low emitting vehicles that are twice as clean as the
cleanest new gasoline cars on the road. Volkswagen will start
production of its city car, the Chico, in 1995, and many other
manufacturers have similar projects in development. It has
attracted attention with the improvements it has made to a proton
exchange membrane fuel cell pioneered by General Electric of the
US. In that, it differs from other electrical vehicles under develop-
ment, which are essentially converted delivery vans intended for
commercial fleets. It required not only the development of new
alloys with the required crash protection properties, but also new
production processes. They will be confined mainly to city centres
and could be the only kind of car allowed in the most environmen-
tally sensitive areas.

Ozsoy et al. (2010)

Ken Baker, vice-president of GM’s research and development
centre, insists that GM wants electric vehicles to be a marketplace
success. Renault and Peugeot, the French carmakers, yesterday
announced a co-operation accord to help the development of elec-
tric cars over the next three years. Electric vehicles are currently
uneconomic but California has insisted that carmakers begin offer-
ing ‘zero emission’ vehicles—in other words, electric cars—by
1998 if they are to sell other models in the state. America’s big
three car makers—General Motors, Ford and Chrysler—are to
co-operate much more closely in the development of electronic
vehicles. The Electric Power Research Institute has worked with
both GM and Chrysler to develop electric-powered vans for
evenual production. The venture will take place under the auspices
of the US Council for Automotive Research (Uscar), an umbrella
body which co-ordinates research among the big three, and it will
aim to find ‘the most effective way to hasten electric vehicle devel-
opment’. The trio have signed an agreement to investigate
co-operation in the design, development, testing and possible
manufacturing of electric vehicle components which would ulti-
mately be used in each company’s own vehicles. In the past few
weeks Fiat has indicated its intention to produce an electric version
of the Cinquecento, its new small car, and Citroen of France has
unveiled a prototype electric town car, the Citela.

Steinberger and Ježek (2004)

So, while a battery vehicle might be practical as a second car, used
for short range commuting or shopping, it is a non-starter as an
alternative to the family-cum-business car. Yamanouchi’s predicts

that in 30 years, petrol or diesel-powered cars will account for just 10
percent of the world’s total car output, having been supplanted
mainly by hydrogen cars but also by a much smaller proportion of
battery powered urban vehicles. Smith refused to estimate how
much the car would cost if it went into production, except to say that
it would be priced competitively with other cars. Now, nearly a year
later, car showrooms clearly are not brimming with alternative-fuel
cars. Despite the criticism, electric cars seem poised to represent part
of the car market by 1998. Although those gasoline cars are indi-
vidually dirtier than, say, a car running on a methanol blend, there
are more of them. They see electric cars ‘as little car for the city
only’, says Massimello. Unlike other electric vehicles that are
conversions of existing cars or vans, GM’s version was designed
from the ground up as a practical electric car for the consumer
market. But, as one Los Angeles car dealer said: ‘They can make me
put electric cars in my showroom—but they can’t make people buy
them if they don’t want to.’

QIA-1 and QIA-21

Environmentalists keep on saying the battery-electric is the car of
the future. The only question is how soon they will be on the road
and what will be in their tanks. Electric cars are the only vehicles
to meet such standards so far. How the clean fuels issue will
ultimately resolve itself is as murky as the skies over Los Angeles.
This does not mean the car-makers are not interested in making
electric cars powered by batteries. For at least 30 years, there has
been talk of a radically new kind of battery that would make
electric cars competitive with petrol or diesel cars. The 200-page
study* appears to reinforce the arguments of the US ‘big three’ car
makers, General Motors, Ford and Chrysler, that electric vehicle
technology is not sufficiently advanced for viable battery cars to go
on sale in California in 1998 in line with state environmental
legislation. Unlike other electric vehicles that are conversions of
existing cars or vans, GM’s version was designed from the ground
up as a practical electric car for the consumer market. Were it not
for Californian state clean-air legislation requiring 2 per cent of
each manufacturer’s sales to be of zero-emission vehicles (Zevs)
from 1998, it is unlikely that the battery-powered car—currently
seen as the only way of achieving zero emissions in urban areas—
would be a candidate for volume production this century, certainly
in North America.

1There was no difference in the extracted summary for this topic.
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