
An Algebra for probabilistic XML retrieval

Benjamin Piwowarski
LIP6, University Paris 6
8, rue du capitaine Scott

75015 Paris, France

bpiwowar@poleia.lip6.fr

Patrick Gallinari
LIP6, University Paris 6
8, rue du capitaine Scott

75015 Paris, France

gallinar@poleia.lip6.fr

ABSTRACT
In this paper, we describe a new algebra for XML retrieval.
We first describe how to transform an XPath-like query in
our algebra. The latter contains a vague predicate, about,
which defines a set of document parts within an XML docu-
ment that fullfill a query expressed as in “flat” Information
Retrieval – a query that contains only constraints on con-
tent but not on structure. This predicate is evaluated in a
probabilistic way: we thus need a probabilistic interpreta-
tion of our algebra. Answers to query needs expressed with
vague content and vague structure constraints can then be
evaluated.

1. INTRODUCTION
With the expansion of the Web and of large textual resources
like electronic libraries, appeared the need for new textual
representations allowing interoperability and providing rich
document descriptions. Several structured document repre-
sentations and formats were then proposed during the last
few years together with description languages like XML.
This allows for richer descriptions with the incorporation of
metadata, annotations and multimedia information. Doc-
ument structure is an important source of evidence, and
should be considered together with textual content for in-
formation access tasks. Information retrieval engines should
be able to cope with the complexity of new document stan-
dards so as to fully exploit the potential of these represen-
tations and to provide new functionalities for information
access. For example, users may need to access some spe-
cific document part, navigate through complex documents
or structured collections; queries may address both meta-
data and textual content.

In INEX (Initiative for the Evaluation of XML retrieval),
queries are expressed in a query language (NEXI) which is
very similar to XPath. A vague operator (about) is intro-
duced in order to allow for queries in a similar fashion than
in information retrieval, that is queries that only contain
contraints on what the retrieved element should be about,

TDM’04, the first Twente Data Management Workshop on XML Databases
and Information Retrieval, Enschede, The Netherlands
c© 2004 B. Piwowarski

but which do not contain any contraint on structural re-
lationship constraints an element must fullfill. Such lan-
guages can be used to express query needs that mix possi-
bly vague content and structure constraints. XPath is for
XML documents what SQL for databases is: a language that
describes which information should be retrieved from XML
documents. In traditional databases, this request is usually
mapped into an algebra which in turn is used as a query
plan. This query plan is closely related to physical opera-
tions that will give the answers to the query. In databases,
the result of a formula of the algebra is a set of tuples. In
XML databases, the result is a set of elements.

Defining or choosing an algebra is a very important issue if
one wants to answer complex query needs. This is proven
in many papers of the semi-structured database field [4, 1].
Such approaches are also used in INEX [3]. As in classical
IR, XML IR aims at retrieving the set of document elements
that fullfill a given query need. This query need is by defi-
nition imprecise. The algebra we define in this paper can be
used to answers vague queries that have constraints on both
content and structure and fits into our Bayesian Networks
framework [5] we are using for “Content Only” queries –
queries that have no constraint on structure.

Our algebra is closely related to the algebra defined by Fuhr
and Grossjohan [2] which we considered before defining our
own algebra for XML retrieval. However, their algebra has
some drawbacks. Firstly, it is too much closely related to
XPath and to the datalog approach they use. Secondly,
the algebra they define is somewhat complex and cannot be
easily extended to cope with new task like vague constraints
on structure. However, we kept their idea of defining the
relevance of a document element1 as an event: the probabil-
ity that a doxel is an answer is the probability of the event.
This probability can be computed by a probabilistic model.

The interest is more explicit when one consider an exam-
ple. Let us suppose that we are searching doxels that are
(1) about cats. This query need can also be expressed as
the set of doxels that are (2) the parents of children about
cats. Let R(cat) denote the set of doxels that are about
cats. Then the answers to the original query need (1) is the
set R(cat) while the answers to the modified query need
(2) is the set pa(child(R(cat)))2, the parent of children of

1we will use the word “doxel” in the remainder of the paper
in place of “document element”
2See the table 2 for a description of notations.

elements which are about cats. When the set R(cat) is de-
fined by a distribution of probability, we must not evaluate
too quickly the probability that an XML element belongs
to the set (2). Let us suppose that a doxel x has two chil-
dren y1 and y2, and that the probability of a belonging to
R(cat) is pa. Then, we can assume that the probability
that y1 (or y2) belongs to child(R(cat)) is also pa. The
probability that x is the parent of a doxel in child(R(cat))
is P (y1 ∈ R(cat) ∨ y2 ∈ R(cat)). if we use the classical
“noisy-or” to compute the probability that either y1 or y2

is such a children, then the probability that a is an answer
to our query need is 1 − P (y1 6∈ R(cat))P (y2 6∈ R(cat)) =
1 − (1 − pa)2 6= pa. We thus need to keep the information
that pa “comes from” the relevance of a to the query about
cats.

The paper is organised as follows. In section 2 we briefly
define the subset of XPath which is the basis of our query
language. We then show how we transform a query need
expressed in an XPath-like language into our algebra in
section 3. As queries are vague, we define how to compute a
probability that a doxel is an answer - that is, that a doxel is
in the set defined by a formula of our algebra - in section 4.

2. QUERY LANGUAGE
In this section, we define briefly the part of XPath we use.
We also define notations that will be used in the remainder
of the paper.

Components of anXPath
An XPath is read from left to right. The different compo-
nents are separated by a slash / which is not within brackets.
For example, we decompose
/A1::A2[B1::B2/C1::C2 and F1::F2]/D1::D2/E1::E2 in three
parts,
/A1::A2[B1::B2/C1::C2 and F1::F2], /D1::D2 and /E1::E2.

Each component is itself composed of three parts:

1. The axis (before ::). The axis can take the following
values and define a set for a doxel x:
/child (the set of the children of x),
/descendant (the set of all descendants of x),
/attribute (the set of the attributes of x),
/self (x itself),
/descendant-or-self (x itself and its descendants),
/following-sibling (the next siblings of x),
/following (the next doxels with respect to the doc-
ument order),
/parent (its parent),
/ancestor (its ancestors),
/preceding-sibling (its preceding siblings),
/preceding (the previous doxels with respect to the
document order),
/ancestor-or-self (x or its ancestors) ;

2. The label (after ::).

3. The filter (between brackets) that express a boolean
condition on doxels.

The axis and the label are very often grouped together in
order to shorten the XPath expression. The list of abbre-

viated syntaxes is shown in table 1. In the remainder of the
paper, we use this abbreviated syntax as often as possible
so as to shorten the query needs expressed in XPath.

Usual syntax Abbreviated syntax
child::a a

/child::a /a

child::a a

/child::* /*

child::* *

/attribute::a /@a

self::a a

/attribute::* /@*

attribute::a /@a

/parent::* /..

parent::* ..

/self::* /.

self::* .

/descendant-or-self::a //a

/descendant-or-self::* //*

Table 1: Abbreviated syntax of XPath. In the table,
a is a label (XML tag name).

As we use a restricted XPath, we will suppose that each
component of our query language is defined as follows:

The axis selects a set of doxels. For the first component
of the XPath, this set is defined with respect to the
document d. For the first component of an XPath

within a filter, the set of selected doxels is evaluated
with respect to the document d or to the filtered doxel.
For any another component, the selection is made with
respect to the set of doxels selected by the previous
component.

The label a filters the set of doxels selected by the axis
and keep only those which have the label a. When the
label is *, the “axis” set is not filtered. Then,

the filter returns the subset of those doxels which fullfill
the boolean conditions expressed in the filter.

The filter is a boolean expression which defines the condi-
tions that a doxel must fullfill. An XPath can be used in
the filter: it is defined with respect to the doxel for which
the condition is evaluated (if the path does not begin with
/) or with respect to the document root d (if the path be-
gins with /). In our subset of XPath, a filter is a condition
which can be true or false for one doxel. For a given doxel
x, we define recursively the following filters:

• f1 and f2 which is true if f1 are f2 true ;

• f1 or f2 which is true f1 or f2 are true ;

• not f which is true if f is not true ;

• x, where x is an XPath, which is true if the set of
elements defined by x is not empty.

• about(x, q) which is true if the set of elements defined
by x answer the query need q. It is possible to define
other predicates (for other medias for example).

• x = A (where x is an XPath and A is a constant (text,
number, etc.) which is true if one of the doxels of the
set defined by x has a content which is equal to A.
The operators (6=, >, <, ...) are also defined for some
specific datatypes like number, strings, etc.

An XPath-like language can be used to define a query need
with constraints on both structure and content in XML doc-
uments. In the next section, we show how we transform an
XPath into our algebra. The result will be a function that
returns the set of doxels in a given document that are the
answers to the query need. In the remainder of the paper,
we will refer to the three examples defined in figure 1.

3. THE ALGEBRA
In this section, we give an explicit way to transform any
query need expressed in an XPath-like language into an
algebra which is defined on the parts of the set of doxels.
Besides classical operators of the set theory like the inter-
section, the union and the complement, we use structural
operators which are defined in table 2. We denote X the set
of all doxels.

Notation Relation Notation
Parent pa?(x) Parent and self pa?(x)
Ancestors anc?(x) ... and self anc?(x)

Children child?(x) ... and self child?(x)
Descendants desc?(x) ... and self desc?(x)

Siblings siblings?(x) ... and self siblings?(x)

Precedinga preceding?(x) ... and self preceding?(x)
Followingb following?(x) ... and self following?(x)

awrt the document order
bwrt the document order

Table 2: Relationships in an XML document. When
the operator have a subscript, the result set is re-
stricted to the subscript set: “?” is either / (for
XML elements) or @ (for XML attributes). These
operators are defined on the power set P(X) of dox-
els X and take their values in the same set: for ex-
ample, pa(A) is the set of all the doxels which have
a child in A.

In the remainder of the paper, we will restrict the evaluation
of an XPath to a given document d. We need to introduce
three new functions:

1. R(q) which returns the set of doxels which are answers
to the query need q. We first consider that this set is
“strict” (an element is in the set or not), but latter we
will consider this set as vague. That is, a doxel is in
the set with a given probability.

2. terms (x) which returns the textual content of a doxel
and the function. The terms−1 (t) then returns the
set of doxels that have the content t.

3. label (x) which returns the label of the doxel (the tag
name). The function label−1 (l) returns the set of dox-
els which have a label l.

The algebra is defined on the set P(X) (the set of all the
part of the set of doxels). We use the operator ◦ to compose

the different functions defined on P(X) which take values
in P(X). We also use the intersection, the union and the
complement. A constant in the algebra is thus a subset of
the set of doxels X . For example, the formula pa(R(cat) ∩
R(black)) is the composition of two intersection functions
of two constants (R(...)) with the function pa that returns
the parents of a set of doxels.

An XPath x is composed of n components:

x = (x1, . . . , xn) where xi = (ai, li, fi)

where ai is the axis, li the label and fi the filter of the ith

component. For example, I3 is defined by the sequence:
(/child, document,@year = 2002 and

.//image and about(title,"cat")),
(descendant-or-self,p,about(.,black)).
Each part is a component that can be processed separately
and is transformed into a function f : P(X) → P(X):

• The axis ai is transformed into a structural operator:
for example, /child is transformed into child.

• The label (or a set of labels) li is transformed into a
function that selects a subset of doxels which have a
label in the set li.

• The transformation fi of the filter is more complex
and is described latter. Briefly, we process the filter by
defining the set of doxels that fullfill the condition(s)
expressed in the filter. The filter is then defined as the
intersection of the latter with the set of doxels we have
to filter (that is, which have been selected by the axis
and filtered by the label).

We now define more formally how to transform a compo-
nent in a function which maps a set of doxels to another set
of doxels. This transformation is based on three transfor-
mations that all return (except Ψ

(0)
A) functions f : P(X) →

P(X):

• The transformation of the axis is denoted ΨA;

• The transformation of the label ΨL;

• The transformation of the filter ΨF .

With these notations, the XPath x can be defined as the
result of the evaluation of the following algebraic expression:

Ψ(d, x) = ΨF (fn) ◦ ΨL(ln) ◦ ΨA(an)

◦ · · ·

◦ΨF (f2) ◦ ΨL(l2) ◦ ΨA(a2)

◦ΨF (f1) ◦ ΨL(l1) ◦ Ψ
(0)
A (d, a1)

For XPath within filters, Ψ
(0)
A (a1) is replaced by Ψ

(0)
AF in the

last line. In the remainder of this section, we focus on the
transformation of each component separately.

The axis
Let us begin with the axis transformation of the first com-
ponent of an XPath, which associate a function from P(X)

I1 Doxels that are about cats
//*[about(.,"cat")]

I2 Images in paragraphs about about cat pictures

//image[../p[about(.,"cat pictures")]]

or
//p[about(.,"cat pictures")]/image

I3 Paragraphs about black in a document written in 2002 which title is about cat and that contains a picture
/document[@year = 2002 and .//image and about(title,"cat")]//p[about(.,"black")]

Figure 1: Original queries

Axis Transformation Ψ
(0)
A and Ψ

(0)
AF

/child d
/descendant desc/(d)

/descendant-or-self desc/(d)

Only within a filter Ψ
(0)
AF

child child/

descendant desc/

attribute desc/ ∩ X@

self Id

descendant-or-self desc/

following-sibling following/ ∩ siblings
following following/

parent pa/

ancestor anc/

preceding-sibling preceding/ ∩ siblings
preceding preceding/

ancestor-or-self anc/

Table 3: Sets and XPath (initialisation and axis).
The transformation of an axis (left part) is given
by the right column of the table. The functions are
either constants (for example, x or desc(x)) or struc-
tural operators. An intersection I = ϕ1∩ϕ2 is defined
in the function set X 7→ P(X) in the following man-
ner: I : x ∈ X 7→ ϕ1(x) ∩ ϕ2(x).

to P(X) to an axis. The simplest (constant) is Ψ
(0)
A which

selects doxels in the document (table 3, top). Within a fil-

ter, this function is Ψ
(0)
AF , which selects a set of doxels with

respect to the evaluated doxel. When the axis is not a part
of the first component, then the table 4 gives the transfor-
mation.

Axis Transformation ΨA

/child child/

/descendant desc/

/attribute desc@

/self x/

/descendant-or-self desc/

/following-sibling following/ ∩ siblings
/following following/

/parent pa/

/ancestor anc/

/preceding-sibling preceding/ ∩ siblings
/preceding preceding/

/ancestor-or-self anc/

Table 4: Set and XPath (axes). The transformation
of an axis (left part) is given by the right column of
the table.

The label
The transformation of a label l is simple, as it is reduced to
the evaluation of the intersection of the set of doxels which
have a label l and the set of evaluated doxels:

ΨL(l) : P(X) 7→ P(X)

X 7→ X ∩ label−1 (l)

where we handle the special case of * by defining label−1 (∗) =
X .

The filter
Finally, we have to define how to transform a filter. As
stated before, we first have to define the set of all doxels
that fullfill the filter, and then we only have to take the
intersection between that set and the set of doxels for which
we have to evaluate the condition within the filter. The
function which transforms a filter in the set of of doxels that
fullfill the filter is denoted Ψ′

F . Then:

ΨF (f) : P(X) 7→ P(X)

X 7→ X ∩ Ψ′
F (f)

To define Ψ′
F , we have to introduce first what we call a

“pseudo inverse” of a function ϕ : P(X) 7→ P(X). It is
defined as follows:

ϕ∗ : P(X) 7→ P(X)

X 7→ {x/x ∈ X , ϕ(x) ∩ X 6= ∅}

It can be shown easily that the pseudo inverse of a constant
function is the same constant. For the other structural op-
erators, the pseudo inverse is given in table 5: the pseudo
inverse of a structural operator is itself a structural operator.

Function Pseudo inverse
pa child
anc desc
child pa
desc anc

Table 5: Pseudo inverse of structural operators

We now have to demonstrate that it behaves like the inverse
with respect to the composition operator

(ϕ1 ◦ ϕ2)
∗ = ϕ∗

2 ◦ ϕ∗
1

For all X ⊆ X ,

x ∈ ϕ∗
2 ◦ ϕ∗

1(X) = {x/x ∈ X , ϕ2(x) ∩ ϕ∗
1(X) 6= ∅}

⇔ ∃x′ ∈ X , x′ ∈ ϕ2(x) ∩ ϕ∗
1(X)

⇔ ∃x′ ∈ X , x′ ∈ ϕ2(x) ∩ {x/x ∈ X , ϕ1(X) ∩ X 6= ∅}
⇔ ∃x′ ∈ X,∃x′′ ∈ ϕ2(x), x′ ∈ ϕ1(x

′′) ∩ X
⇔ ∃x′ ∈ X , x′ ∈ ϕ1 ◦ ϕ2(x

′) ∩ X
⇔ x ∈ (ϕ1 ◦ ϕ2)

∗(X)

We can also remark that if ϕ1 = X ′ ∩ ϕ2, then

ϕ∗
1(X) = ϕ2(X ∩ X ′)

Filter f Function Ψ′
F

x Ψ(x)∗(X)
about(x,q) Ψ(x)∗(R(q))

x = A Ψ(x)∗(terms−1 (A))
f1 and f2 Ψ′

F (f1) ∩ Ψ′
F (f2)

f1 or f2 Ψ′
F (f1) ∪ Ψ′

F (f2)

Table 6: Filter transformation

The table 6 shows how to use the pseudo inverse in order to
transform the filter:

• For the filter x which is reduced to an XPath expres-
sion, an element a is in the filtered set if and only if
there exists an element defined by x relatively to a,
that is if Ψ(x)(a) 6= ∅ ⇔ a ∈ Ψ(x)∗(X).

• For the filter about(x,q), an element a is in the filtered
set iff there exists an element defined by x relatively
to a which is also in R(q), that is if a ∈ Ψ(x)∗(X) ∩
R(q) ⇔ a ∈ Ψ(x)∗(R(q)).

• The filter x = A is similar to the previous filter.

• The operator and (resp. or) is simply defined as the
intersection (resp. the union) of elements that fullfill
the first and the second filters.

In figure 2, we show how the queries of figure 1 are trans-
formed into our algebra. Please note that our algebra may
be optimised: formulas can be transformed like in all alge-
bras in order to be more efficiently evaluated by the search
engine. This case is illustrated by the case I2bis in figure 2:
the formula reduces to the formula of I2, despite of a more
complex XPath used to express the query need. However,
our main concern is to define an algebra for XML vague
retrieval and we did not design with efficiency in mind.

4. PROBABILISTIC INTERPRETATION
In the previous section, we used a predicate about which
is transformed into the function R(q) that returns the set
of doxels that are answers to the query q. In Information
Retrieval (IR), the answers to a query are not well defined:
the query is expressed in vague terms, and the real query
need cannot be easily defined. We thus have to define R(q)
as a “vague” set in order to compute the answer to a query
that contains predicates like about.

In our approach, as in the probabilistic interpretation of
fuzzy sets [6], a set A ⊂ X is not anymore defined strictly.
We denote such a set by Av (v for vague). Av is defined by
a probability distribution on subsets of X. The case where
probability P (Av = A) = 1 means that the set Av is strict
and not vague (the concept of fuzzy set is thus more general
than the concept classical set). An element a belongs to Av

with a probability P (a ∈ Av) which is formally defined by:

P (a ∈ Av) =
X

A⊂X,a∈A

P (Av = A)

Most approaches like ours does only consider the event a ∈
Av and make a series of assumptions on the independence
of those events. Our own assumptions are linked to the
structure of the Bayesian Networks we use to compute the
probability that an element belongs to the set of answers
to a given query need. We do not discuss this point in this
paper.

Fuzzy sets are not sufficient for our problem which is to
evaluate if an element belongs to transformations of fuzzy
sets. Furthermore, the independence of elementary events
(as defined in the previous paragraph) does not hold in our
case. We now describe how to define vague sets that are
answers to a given XPath-like expression.

We want to define the probability that a doxel a belongs to
the set ϕ(Av) where ϕ is a set function (P(X) → P(X)).
For a classical set,

a ∈ ϕ(A) ⇔ ∃b ∈ A, a ∈ ϕ({b})

which is associated to the logical formula:
_

b∈X ,a∈ϕ({b})

b ∈ A

The pseudo inverse ϕ∗ can be used in this formula, as ϕ∗(b) =
{a ∈ X/a ∈ ϕ(b)}. The previous formula can be rewritten
as:

_

b∈ϕ∗({a})

b ∈ A

I1 Doxels that are about cats

I1 = //*[about(.,"cat")]

Ψ(I1)(d) = ΨF (about(.,"cat")) ◦ ΨL(*) ◦ Ψ
(0)
A (/descendant-or-self)(d)

= Ψ′(.)∗(R("cat")) ∩ X ∩ desc(d)

= R(cat) ∩ desc(d)

I2 Images in paragraphs about about cat pictures

q1 = "Cat pictures"

I2 = //p[about(.,q1)]/image

Ψ(I2)(d) = ΨL(image) ◦ ΨA(/child) ◦ ΨF (about(.,q1)) ◦ ΨL(p) ◦ Ψ
(0)
A (/desc-or-self)

= (label−1 (image) ∩ child) ◦ (R(q1) ∩ label−1 (p) ∩ desc(d))

= label−1 (image) ∩ child(R(q1) ∩ label−1 (p) ∩ desc(d))

I2bis Images in paragraphs about about cat pictures

q1 = "Cat pictures"

I2′ = //image[../self::p[about(.,q1)]]

Ψ(I2′)(d) = ΨF (../self::p[about(.,q1)]) ◦ ΨL(image) ◦ Ψ
(0)
A (desc-or-self)

= Ψ′(../self::p[about(.,q1)])
∗(X) ∩ (label−1 (image) ∩ desc(d))

and

ΨF (../p[about(.,q1)]) = (ΨF (about(.,q1)) ◦ ΨL(p) ◦ ΨA(/child) ◦ Ψ
(0)
AF (parent))∗(X)

= (R(q1) ∩ label−1 (p) ∩ Id ◦ pa)∗(X)

= child(R(q1) ∩ label−1 (p))

Then,

Ψ(I2′)(d) = child(R(q1) ∩ label−1 (p)) ∩ label−1 (image) ∩ desc(d)

We find the same algebraic expression than for I2, despite of a different XPath expression.

I3 Paragraphs about black in a document written in 2002 which title is about cat and that contains a picture

F = @year = 2002 and .//image and about(title,"cat")

I3 = /document[F]//p[about(.,"black")]

Ψ(I3)(d) = ΨF (about(.,"black")) ◦ ΨL(p) ◦ ΨA(/desc-or-self)

◦ΨF (F) ◦ ΨL(document) ◦ Ψ
(0)
A (/child)

= R(”black”) ∩ label−1 (p) ∩ desc ◦ ΨF (F) ◦ (label−1 (document) ∩ d)

Ψ′
F (F) = pa@(terms−1 (2002) ∩ label−1 (year))

∩anc(label−1 (image))

∩pa(R(”cat”) ∩ label−1 (title))

Then,

Ψ(I3)(d) = R(”black”) ∩ label−1 (p) ∩ desc
`

Ψ′
F (F) ∩ label−1 (document) ∩ d

´

Figure 2: The transformation of our example queries into our algebra

I1 Doxels that are about cats

a ∈ I1v ≡ a ∈ R(cat) ∧ a ∈ desc(d)

I2 Images in paragraphs about about cat pictures

a ∈ I2v ≡ a ∈ label−1 (image) ∧
_

b∈pa(a)

`

b ∈ R(q1) ∧ b ∈ label−1 (p) ∧ b ∈ desc(d)
´

I3 Paragraphs about black in a document written in 2002 which title is about cat and that contains a picture

a ∈ I3v ≡ a ∈ R(”black”) ∧ a ∈ label−1 (p) ∧
_

b∈anc(a)
0

@

0

@

_

c∈child@(b)

`

c ∈ terms−1 (2002) ∧ c ∈ label−1 (year)
´

∧
_

c∈desc(b)

`

c ∈ label−1 (image)
´

∧
_

c∈child(b)

`

c ∈ R(”cat”) ∧ c ∈ label−1 (title)
´

1

A ∧ b ∈ label−1 (document) ∧ b = d

1

A

Figure 3: Logical formulas with which we can compute the probability that a doxel is an answer to an
information need

and we can then define the recursively the probability that
a ∈ ϕ(Av) :

P (a ∈ ϕ(Av)) = P (
_

b∈ϕ∗({a})

b ∈ Av)

As Fuhr and Grossjohan [2], we define the certain event
(denoted ⊤) and the events that are not certain (denoted
⊥). For a classical set A:

x ∈ A =

⊤ if x ∈ A
⊥ else

We can then define recursively the fact that a doxel belongs
to a vague set transformed by ϕ:

x ∈ ϕ(Av) ≡
_

x′∈ϕ∗(x)

x′ ∈ Av

Finally, for intersection and union operators, we have:

x ∈ Av ∩ Bv ≡ (x ∈ Av) ∧ (x ∈ Bv)

x ∈ Av ∪ Bv ≡ (x ∈ Av) ∨ (x ∈ Bv)

In figure 3, logical formulas associated to the three queries
of our initial example are shown. These formulas can be
automatically derived from the figure 2. The formula can
thus be automatically derived from a query expressed in
a XPath-like language (figure 2) that contains an about

predicate.

5. CONCLUSIONS AND OUTLOOK
In this paper, we presented a new algebra for XML retrieval
and described how a query expressed in an XPath-like lan-
guage can be transformed into an algebra and then into a
logical formula. This logical formula can be evaluated by

probabilistic models like the Bayesian Networks we use to
answer “content only” queries [5]. We intend to use such an
algebra for the next INEX campaign.

Our algebra is closely related to existing algebras which ad-
dress the problem of vague content and structure retrieval
like [2]. However, our algebra relies only on simple opera-
tors:

• Usual set operators (intersection, union, complement)

• Structural operators (parent, child, etc.)

• Selection operators (doxels with a given label, doxels
that answers a query)

In our framework, an XPath-like query is processed in three
steps: (1) syntaxic parse of the query, (2) transformation of
the query into our algebra and (3) transforming the algebraic
expression into an event. The score of an element is then
given by its degree of belonging to the set of answers. The
only vague set is the “relevant to a query” set. But it is
easy in our algebra to define new vague sets and even vague
operators. This can be useful for vague content and vague
structure query needs. For example,

• the label−1 (paragraph) function can be defined as a
fuzzy set. In this case, a doxel which has the label
section can belong to this set with a (possibly low)
probability;

• The structural operators (parent, children, etc.) can
be defined less strictly, in order to allow some vague-
ness in the expression of axis.

However, we still need to implement this algebra and to eval-
uate the results returned to a given query. Another problem
is the evaluation of the logical formulas. In simple cases (like
in the query language NEXI), we can use our BN without
any problem as they encode a number of independence as-
sumptions which make the evaluation of the probability pos-
sible. But for complex XPath queries, this is not the case.
If complex queries have really an interest in the context of
information retrieval in XML documents, this issue should
be addressed.

6. REFERENCES
[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and

J. L. Wiener. The lorel query language for
semistructured data. International Journal on Digital
Libraries, 1(1):68–88, 1997.

[2] N. Fuhr and K. Grossjohann. XIRQL: A query
language for information retrieval in XML documents.
In W. B. Croft, D. J. Harper, D. H. Kraft, and
J. Zobel, editors, The 24th International Conference on
Research and Developmenent in Information Retrieval,
New Orleans, Louisiana, USA, Sept. 2001. ACM.

[3] J. List, V. Mihajlovic, A. P. de Vries, and G. Ramı́rez.
The TIJAX XML-IR system at INEX 2003. In N. Fuhr,
M. Lalmas, and S. Malik, editors, INitiative for the
Evaluation of XML Retrieval (INEX). Proceedings of
the Second INEX Workshop, Dagstuhl, Germany, Dec.
2003.

[4] G. Navarro and R. Baeza-Yates. Proximal nodes: A
model to query document databases by content and
structure. ACM TOIS, 15(4):401–435, Oct. 1997.

[5] B. Piwowarski and P. Gallinari. A machine learning
model for information retrieval with structured
documents. In P. Perner, editor, Machine Learning and
Data Mining in Pattern Recognition, pages 425–438,
Leipzig, Germany, July 2003. Springer Verlag.

[6] L. A. Zadeh. Fuzzy Sets. Information and Control,
8:338–358, 1965.

