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BEYOND CUMULATED GAIN AND AVERAGE PRECISION:

INCLUDING WILLINGNESS AND EXPECTATION IN THE

USER MODEL

B. PIWOWARSKI, G. DUPRET, AND M. LALMAS

Abstract. In this paper, we define a new metric family based on two con-
cepts: The definition of the stopping criterion and the notion of satisfaction,
where the former depends on the willingness and expectation of a user ex-
ploring search results. Both concepts have been discussed so far in the IR
literature, but we argue in this paper that defining a proper single valued
metric depends on merging them into a single conceptual framework.

1. Introduction

In the last few years, Information Retrieval (IR) metrics have regained atten-
tion within the IR community, motivated by concerns about the faithfulness of the
measures in IR, by trying to explicitly define the user behaviour within an effective-
ness measure [5, 3]. Parallel to these efforts, the advantages of single valued metrics
have been argued since the very beginning of IR evaluation [1]. Nonetheless, their
interest lie in the fact that they provide an ordering between systems, which is use-
ful when one wants to compare many different systems or to use machine learning
when learning to rank.

Developing a single valued measure that faithfully represents a system is both a
crucial and not fully resolved issue. In this paper, we propose a single valued metric
family relying on two factors, the stopping criterion and the user satisfaction. Both
factors are already mentioned in the IR literature, but were surprisingly never
explicitly combined within a single metric. More importantly, with respect to the
stopping criterion, we propose a new rationale for its definition: It should depend
on both the willingness of the user to pursue browsing the search results and its
expectation to find new relevant material. We analyse two recently proposed user
models, one for average precision (AP) in [5], and Rank-Biased Precision (RBP [3]),
that are representative instances of user models developed for the two different
different families of metrics proposed so far in IR (one based on precision and
recall, the other on cumulated gain [2]), in order to stimulate debate on the need
of a new type of user models for IR evaluation.

2. The metric family

Following standard IR effectiveness measures, we assume that a user browses
the list of search results sequentially. We can imagine that at each step (rank in
the list) of the searching process, we can measure whether the user will stop or
continue, and in the former case what is the degree of satisfaction of the user. The
expected satisfaction over all possible stopping points defines our metric.
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Modelling when the user stops is a key concept if we want to compute a single
valued measure [1]. From a practical point of view, Cooper defined the stopping
criteria to be either a given rank or a given level of recall. In its interpretation of
AP, Robertson [5] describes the user model by specifying what is the probability
that a user stops to search exactly at a given rank. Another approach is that of [3]
that estimates the conditional probability that a user stops knowing that the user
has continued until then.

The conditional approach appears to be a more natural way to define the fact
that a user stops, since it is a local decision, i.e., we do not have to integrate out
of all possible user behaviours at previous ranks.

We suppose that stopping depends on two different but related factors: How
much effort (e.g, in time or ranks1) the user is willing to spend before finding a new
relevant document, and how much effort the user expects to spend before finding
a new relevant document. These are in turn influenced by numerous factors, for
example, how many relevant information the user has seen so far, the effort the
user has to spend to get to the next results, how much more relevant information
is present in the ranking, etc. This view would account for the fact that having a
result at rank 2 or 3 does not make a difference, to a certain extent, in the measured
user satisfaction, since users compensate for poor results [6]: They are willing to
explore more when they do not find a relevant document, until their expectation of
finding a relevant document drops below a given threshold.

From a pragmatic point of view, the willingness should depend on how much
more relevant documents the user expects to find, and thus relates to the total num-
ber of relevant documents (recall). More precisely, the (effort) willingness should
be a decreasing function of a user’s estimation of the number of relevant documents
left in the ranking. The expectation of the number of ranks to browse before finding
relevant information should be evolving according the current concentration of rel-
evant (and also novel) documents. Among other features that could be explored, we
believe the expectation should also reflect the user belief in the performance of the
search engine (which could in turn be used as a subjective measure of performance).

Put together, and to relate it to the two metrics we analyse in this paper, we
should expect the user to stop more if the precision decreases (expectation) and
when the perceived number of left relevant documents decreases (willingness). A
proper definition of the user model is not discussed in this paper, but this user
model could be evaluated using e.g. query logs.

Since we want to compute the expectation of satisfaction at the end of a user’s
search, only when the user stops do we compute satisfaction (or more generally, a
utility value). While satisfaction could be represented in many ways, for normal-
isation purposes we assume that the satisfaction S is a real value bounded by 0
and 1. Satisfaction should take into account the effort of the user and the amount
and diversity of relevant documents found so far, and depends on the type of query.
For example, with navigational queries, one relevant document is enough, hence
the satisfaction should be (close to) maximum at the first rank where a relevant
document appears, whereas for informational queries, satisfaction should be related
to the precision at the rank the user stops.

At rank k, the user stops with a probabilityp (F = k|F ≥ k) and the expec-
ted satisfaction is E [S|F = k]. If the user continues, its expected satisfaction is

1We favour the former, but in this paper consider only the latter to analyse RBP and AP
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E [S|F > k]. This implies that we can define by induction the expected satisfaction
of a user, since the expectation E [S|F ≥ k] is defined as p (F = k|F ≥ k)E [S|F = k]+
p (F 6= k|F ≥ k)E [S|F > k]. Denoting pk the probability p (F = k|F ≥ k) and sk
the expectation E [S|F = k], the expected satisfaction can be written as a closed-
form formula:

(2.1) E [S] =

∞
∑

k=1

(

k−1
∏

u=1

(1− pu)

)

pksk

where both pk and sk have to be defined in order to obtain a computable metric.
In this paper we focus on analysing how they are defined in the case of existing
metrics, and analysing to which extent they verify our requirements, namely that
the stopping criterion should reflect both willingness and expectation, and that
the satisfaction at a given rank measures how satisfied (in average) a user is when
stopping at a given rank.

3. Discussion and Comparison with existing metrics

It is instructive to see how AP and RBP are interpreted within our proposed
approach. In order to do so, we used the most straightforward way to define the
probabilities pk and the expected satisfaction sk in both: For AP we followed [5]
and re-interpreted the stopping criterion. RBP [3] is an instance of Eq. (2.1).

An underlying user model can be defined for AP [5]: A user stops exactly at a
given rank with a uniform probability. Re-interpreting AP in terms of Eq. (2.1), we
offer a slightly different (but equivalent) interpretation: If reaching rank k, the user
always continue if the document is not relevant, and stops with a probability which
is inversely proportional to the number of relevant documents on or after rank k

otherwise. This means that the AP stopping criteria looks even more reasonable
than what have been stated by Robertson [5] since a user is more likely to stop
when finding more relevant documents. The AP user’s model thus relies on one
of the two factors we defined, the willingness, but ignore the expectation factor.
With respect to the expected satisfaction, it is simply defined as the precision at
the given rank which implies AP is more targeted towards informational needs.

The rank-biased precision (RBP) metric proposed by Moffat and Zobel [3] defines
pk as a constant and sk as the gain of a document. This has nonetheless two
shortcomings: First, the constant of probability of stopping implies in our opinion
a worse user model than that of AP, since none of the two factors are taken into
account. Second, the assumption that the gain gk is associated only with the
document at rank k implies that the user satisfaction only depends on the document
where the user stops, which does not comply with our interpretation of sk as an
overall measure of satisfaction. Whereas this might be reasonable for navigational
needs, for informational ones either the discount should not be interpreted as the
probability of stopping at this rank, or the gain should not be interpreted as a
referring only to the document where the user stops.

4. Conclusion

We presented a new family of metrics based on the user’s stopping probability
and expected satisfaction (if stopping) at each rank. For the former, we propose to
take into account both the user willingness of continuing searching and expectation
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of finding new relevant documents. We believe that these two factors are a key to
provide meaningful evaluation measures.

We have analysed two representative metrics in IR, AP and RBP [3]. With
respect to the latter, we have shown that interpreting user satisfaction as precision
at a given rank, the user stopping behaviour respect our willingness requirement
but ignores the expectation of the user to find new relevant documents. With
respect to the former, we have shown that both the user model and the definition
of satisfaction did not match our expectations. This has implications for works
trying to define a user model for CG based metrics. In particular, if the gain is to
be interpreted as in [2], then the discount factor should not be interpreted as the
probability of a user stopping at this rank.

Our future work is to work on both the stopping criterion and the definition of
the satisfaction.
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