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Abstract

In Information Retrieval (IR), whether implicitly or explicitly, queries
and documents are often represented as vectors. However, it may be
more beneficial to consider documents and/or queries as multidimensional
objects. Our belief is this would allow building “truly” interactive IR
systems, i.e., where interaction is fully incorporated in the IR framework.

The probabilistic formalism of quantum physics represents events and
densities as multidimensional objects. This paper presents our first step
towards building an interactive IR framework upon this formalism, by
stating how the first interaction of the retrieval process, when the user
types a query, can be formalised. Our framework depends on a number
of parameters affecting the final document ranking. In this paper we ex-
perimentally investigate the effect of these parameters, showing that the
proposed representation of documents and queries as multidimensional ob-
jects can compete with standard approaches, with the additional prospect
to be applied to interactive retrieval.

1 Introduction

Most information retrieval (IR) models, including probabilistic and vector ones,
use the same underlying one-dimensional representation of documents and que-
ries, i.e., as vectors defined in a vector space, typically a term space. However,
this representation has some limits when dealing with more complex IR aspects
like interaction, diversity and novelty1. Indeed, recent research showed that
these complex aspects of the retrieval process benefit from more sophisticated
representations of documents and queries [15, 3], in particular those providing
for more powerful geometric manipulations of IR components.

The representation of documents and queries in IR should evolve so the
user interaction can be incorporated in a natural and principled way in the IR
process [13]. Our claim is that representing documents and queries as multidi-
mensional objects (e.g. subspaces in a vector space) allows for not only a novel

∗This an extended version of a paper published in RIAO 2010 [8].
1In our research, we are particularly interested in these aspects of the IR process.
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but also a more powerful way to tackle this challenge. This representation is
particularly interesting from a theoretical point of view because it is possible
to use a principled interpretation of the probabilities associated with such mul-
tidimensional objects, which comes from quantum physics [13] – the so-called
“quantum probabilities” framework. This representation is also interesting from
an intuitive point of view because it relies on a geometric representation of docu-
ments and queries in a vector space, which has proved successful in IR [2]. This
representation reveals also a strong connection between orthogonality (in the
vector space) and non-relevance, which has been successfully used to represent
term negation in queries [16].

In [10], a framework for interactive IR that relies on such a multidimensional
representation of documents and queries was proposed. In this framework, the
user’s information need (IN) is represented by a set of weighted vectors that
evolve with the user’s interaction. A probability of relevance of a document
(for that IN) is computed with respect to this set. Although the components
of our framework were described, they remained abstract. In particular, no
explicit document and query representations were proposed. The next step is
to operationalise the framework, which is the focus of this paper. We show how
document and query representations are computed to then allow estimating the
probability of relevance of the document to a given IN.

With respect to related work, multidimensional representations, respectively,
of queries were used in [15] to model negative user feedback, and of documents
were investigated in [3] in an ad hoc setting. Our work encompasses those since
it provides a principled and probabilistic way to work with multidimensional
objects. Finally, two lines of research explored, respectively, a subspace repres-
entation of documents [7] and of a user’s IN [7]. In our work, we go further and
show that both documents and INs can be represented as multidimensional ob-
jects, and propose a principled methodology to construct these representations.

The outline of this paper is as follows. We first briefly introduce our frame-
work and describe how the probability of relevance is computed within the
quantum probability framework (Section 2). Next we show how we construct
the query and document representations, and introduce several parameters for
these representations (Sections 3 and 4). Finally, we present experimental res-
ults, which validate our document and query representations, some of the in-
vestigated parameters, and give insights on how our framework can be further
developed (Section 5).

2 A Quantum-inspired View for IR

Our IR framework is built upon [10], which is based on quantum probabilit-
ies and where we assume that there exists a vector space of pure2 information
needs (INs), where each vector corresponds to an IN that completely charac-
terises a possible user’s IN – by analogy with quantum physics where a vector
completly characterises a physical system. Knowing a user’s pure IN would de-
termine which documents the IR system should return to that user. From a
geometric perspective, a pure IN is answered by a document with a probability

2The concept of “pure” IN is new and central to our framework. In this paper, we use “pure
IN” to distinguish it from “IN”, where the latter refers to information need in its usual sense
in IR, e.g., see [6].
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that depends on the length of the projection of the pure IN vector onto the doc-
ument subspace. Because of the uncertainty attached to the IR search process,
we suppose that the information being searched by a user can be represented
by a set of such pure INs, one for each possible pure IN that composes a user’s
IN.

To compute a probability of relevance of a document to a user’s IN, we make
use of the generalisation of probabilities developed in quantum physics, which
is strongly connected to the geometry of the space used to represent events and
densities. A probabilistic event is represented as a subspace (denoted S) in a
Hilbert space3. Let us assume that S is the event “the document is relevant”. A
probability can first be defined for a pure IN, represented as a unit vector ϕ, by
computing the length of the projection of the vector ϕ onto the subspace S, that

is by computing the value
∥∥∥Ŝϕ∥∥∥2 where Ŝ is the projector onto the subspace S.

This value is the probability that the document is relevant with respect to the
pure IN4.

When a user starts interacting with an IR system by, for instance, typing
a query5, we first compute (see Section 3) an initial set of weighted pure IN
vectors, where each weight is the probability that the pure IN corresponds to
the actual user’s IN. This captures the uncertainty typical to IR where firstly, the
representation is only an approximation of the user’s IN, and, secondly, the query
may be ambiguous. The goal of an IR system is to reduce this undeterminism
through interaction.

More formally, we assume that each pure IN vector ϕi is associated with a
probability pi (the weight). We define the probability of the event S by using
the usual total probability theorem (across all possible pure INs)6:

Pr (S) =
∑
i

piPr (S|ϕi) =
∑
i

piϕ
>
i Ŝϕi = tr

(
ρŜ
)

(1)

where tr is the trace operator [13, p. 83] and ρ =
∑

i piϕiϕ
>
i is called a density

operator7 and corresponds to a (probabilistic) mixture of the pure INs ϕi. In
general, any operator ρ characterised by the fact that it is both positive-semi-
definite8 and of trace 1 defines a probability distribution over the subspaces,

i.e. it is possible to interpret Pr (S) = tr
(
ρŜ
)

as a probability [13].

For each document d, we compute a projector Ŝd (Section 3) and, for a query

q, the IN density ρ is approximated by ρq (Section 4). Using the projector Ŝd

and the density ρq, the probability that a document d is relevant to the query

q is then given by tr
(
ρqŜd

)
.

In our work, we assume that the vector space of pure INs is the term space,
where each dimension corresponds to a term. A pure IN is hence described by
a series of weighted terms. A (simplified) example is shown in Figure 1, where

3Hilbert spaces (roughly, vector spaces with complex scalars) are a central mathematical
concept in quantum physics.

4We have
∥∥Ŝϕ∥∥2 ∈ [0, 1] since ‖ϕ‖ = 1.

5Queries are what (usually) users provide to an IR system, as means to express their INs [6].
6As in quantum physics, we assume different ϕi correspond to different systems and are

thus mutually exclusive.
7We will omit the term “operator” in the remaining of the paper.
8This means v>ρv ≥ 0 for any vector v.
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the pure IN “pop music” (one unit vector) is represented by the terms “music”,
“chart” and “hit” of the term space. We show now how document and query
representations are computed in this term space.

3 Creating the Document Subspace

IN: Pop Music

Term: Hit

Term: Chart

Term: Music

Figure 1: A pure IN in a term space

It is reasonable to assume that a typ-
ical document answers various (pure)
INs, since it is likely to contain an-
swers (be relevant) to several quer-
ies. Moreover, [11] have shown in the
context of XML retrieval, that an-
swers to topics (statements of INs)
usually correspond to document frag-
ments and not full documents. Build-
ing on this, we assume that for each
document there is a mapping between
its (possibly overlapping and non-
contiguous) fragments and a set of pure INs.

A document is thus associated with a set Ud of vectors in the IN space. We
hypothesise that a document is fully relevant to a pure IN if the latter can be
written as a linear combination of the vectors of Ud, that is, if it is contained
in the subspace Sd defined as the span of the vectors in Ud. The document will
be partially relevant to a pure IN with a probability that depends on the length
of the projection of the pure IN vector onto the subspace Sd. The subspace
Sd can be interpreted as a geometric representation of the event “the document
is relevant”. This construction process was validated in a document filtering
task [9]. In this paper, we investigate the effect of several parameters (written
in bold below) on this process.

Document Fragments. We now assume that document fragments are
disjoint, and are obtained through a “natural” segmentation of the document.
Various choices are possible, and our first strategy is to use a single fragment,
the document itself. This corresponds to the vector space approach where a
single vector represents a document. The second strategy is to use paragraphs
as fragments as they seem to be of an appropriate size to correspond to a pure
IN. We also selected a third type of fragment, the sentence, as it is one of the
smallest coherent units in a document.

Weighting Schemes. We now need a vector representation for each frag-
ment. Three weighting schemes are used, namely, tf-idf, tf and binary (term
presence/absence). The latter two are chosen since they allow substantial re-
duction in computational complexity. In addition, binary vectors are close or
equal to tf vectors for small fragments, for example, sentences.
Ud is formally defined as the set of vectors associated with a document d,

obtained through one of the above segmentation and weighting scheme, i.e., we
have one vector for each fragment. As discussed before, we need to compute
the subspace Sd spanned by the vectors of Ud. For this, we use an eigenvalue
decomposition where

∑
ϕ∈Ud

ϕϕ> is expressed as
∑D

i=1 λiviv
>
i where D is the

number of eigenvectors with non null eigenvalues (D is also the dimension of
the associated subspace), λi > 0 are the eigenvalues (we suppose without loss
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of generality that they are of decreasing magnitude, i.e. λi ≥ λi+1) and the
vectors vi form an orthonormal basis of the subspace Sd [12].

Dimension selection. As the vectors constructed from the terms occurring
in the document fragments are only an approximation of the underlying pure
IN vectors, the vectors from Ud will contain terms that should not be associated
with the document. We are thus interested in the eigenvectors associated with
the K highest eigenvalues since low eigenvalues are likely to be associated with
noise [5]. We are interested in measuring the effect of different dimensions to
represent a document. Hence, we chose a simple strategy, where we keep the
eigenvectors whose eigenvalue is higher than the average of the eigenvalues,
which we compared to two extreme strategies, namely, the case where we select
the eigenvector with the highest eigenvalue (one dimension, K = 1) and the
case where we keep all the eigenvectors (full dimension, K = D).

Finally, the projector Ŝd associated with the K dimensional subspace of
document d is expressed as

∑K
i=1 viv

>
i .

4 Creating the Query Density

We now focus on the primary contribution of the paper, namely, the construction
of the IN density ρq for a given query q.

As a query in its simplest form consists of a set of terms, we are first in-
terested in building the query representation for a query composed of a single
term, t. We described how a document is represented as a set of pure IN vectors
corresponding to different fragments of the document. We extend this idea, and
suppose that a query term t can be represented as the set Ut of pure IN vectors
that correspond to document fragments containing the term t. That is, we use
the immediate surroundings of the term occurrences in the documents of the
collection being searched to build that term representation. This is similar to
pseudo-relevance feedback using passages from retrieved documents containing
the query terms [1]. The difference is that we use all the passages to build the
query representation as we want to consider all possible pure INs associated
with the term t.

As we have a priori no way to distinguish between the different vectors in
Ut, we assume that each vector is equally likely to be a pure IN composing the
user’s actual IN. Hence, a document is relevant to the user’s IN if it is relevant to
any of the vectors of Ut, where the vectors are drawn with a uniform probability.
The corresponding density is then written as:

ρt =
1

Nt

∑
ϕ∈Ut

ϕϕ> (2)

where Nt is the number of vectors associated with term t (the cardinality of Ut).
This definition of ρt has all the required properties of a density (see Section 2).
In practice, this representation of a single-term query t means that, the more
vectors ϕ from Ut lie in the document subspace, the higher the relevance of
the document to the query. This query representation hence favours documents
containing different “aspects” of the IN, each of them as represented by one of
the pure INs in Ut associated with a query term t.

We discuss next the representation of a query composed of several terms.
There are three main parameters (written in bold below).

5



Cambridge (UK)

Pizza

(a) A superposition of two INs

Cambridge (USA)

Cambridge (UK)

Pizza

(b) A mixture of two INs

Figure 2: Combining INs

Weighting scheme. As for documents, three weighting schemes, namely,
tf-idf, tf and binary, are used to build the vectors forming Ut.

Query construction (mixture). The above query representation (Equa-
tion 2) can be generalised to a query composed of several terms. We assume that
a relevant document should equally answer all pure INs associated with each
query term. To compute the probability of relevance of a document d, we first
select a term from the query (with a probability wt, see the next paragraph),
and then one of the vectors in Ut. With this vector, we compute the probability
of document d to be relevant to this pure IN. We repeat the process and average
over all the possible combinations. This defines the probability of relevance of
document d given the query. Formally, this corresponds to a density defined
as a mixture of all the pure IN vectors associated with the query terms. This
density is built from the individual query term densities ρt (Equation 2):

ρ(m)
q =

∑
t∈q

∑
ϕ∈Ut

wt

Nt
ϕϕ> =

∑
t∈q

wtρt (3)

Query term weight. The weights wt are used to quantify the importance
of each term t of the query. We experimented with two settings, one where all
the wt were equal, and the other where they were set to the corresponding term
idf values. In both approaches, we normalise the weights so their sum equals 1.

We present a second query construction process, inspired from IR and quantum
theory. In vectorial IR, a query is represented by a vector that corresponds to a
linear combination of the vectors associated with the query terms. In quantum
theory, a normalised linear combination corresponds to the principle of super-
position, where the description of a system state can be superposed to describe
a new system state.

In our case, the system state corresponds to the user’s pure IN, and we
use the superposition principle to build new pure INs from existing ones, as
illustrated with the example shown in Figure 2. Let ϕp, ϕc/uk and ϕc/usa be
three vectors in a three-dimensional IN space that, respectively, represent the
INs “I want a pizza”, “I want it to be delivered in Cambridge (UK)” and “I want
it to be delivered in Cambridge (USA)”. The pure IN vector “Pizza delivered in
Cambridge (UK)”would be represented by a (normalised) linear combination (or
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superposition) of ϕp and ϕc/uk, as depicted in Figure 2(a). We can similarly
build the IN for Cambridge (USA). To represent the ambiguous query “pizza
delivery in Cambridge” where we do not know whether Cambridge is in the USA
or the UK, and assuming there is no other source of ambiguity, we would use a
mixture of the two possible superposed INs, as depicted by the two vectors of the
mixture in Figure 2(b), which brings us to another variant of query construction,
the mixture of superpositions.

Query construction (mixture of superpositions). To compute the
probability of relevance, for each term t of the query, we randomly select a vec-
tor from the set Ut. We then superpose (i.e., compute a linear combination) the
selected vectors (one for each term), where the weight in the linear combination
is
√
wt (see below for why we use a square root). From this vector, we com-

pute the probability of the document to be relevant to this IN made from the
superposition of IN vectors (one per query term). With respect to our example,
the set Upizza would be just one vector (“I want a pizza to be delivered”), and
UCambridge would contain two vectors (one for UK, one for USA).

As with the simple mixture approach, the above process can be repeated for
all the possible selections of vectors and the corresponding query density is:

ρ(ms)
q =

1

Zq

∑
ϕ1∈Ut1

· · ·
∑

ϕn∈Utn

(
n∑

i=1

√
wti

Nti

ϕi

)(
n∑

i=1

√
wti

Nti

ϕi

)>

(4)

where Zq is a normalisation coefficient, and ti (i = 1 . . . n) are the n query terms.
We use Nt to ensure that each term contribution is equally important, and
square roots because both Nt and wt appear two times in the above formula. In

theory the vector
∑

i

√
wti

Nti
ϕi should be normalised but to obtain a computable

formula we did not do so 9.
Note that for one-term queries, the two described query constructions (mix-

ture and mixture of superpositions) give the same result. Another important
point from a computational perspective is that in both cases, the query can be
estimated from single term densities (not demonstrated for Equation 4). We
hence pre-compute the densities ρt for each term t, and use them at query time

to compute ρ
(m)
q and ρ

(ms)
q .

Dimension selection. As for the representation of documents, both dens-
ities are expressed, through eigenvalue decomposition, as a sum

∑D
i=1 λiviv

>
i

where the (λi, vi) are eigenpairs ordered by decreasing eigenvalues. Our final

density used for computing the probability of relevance is then ρq =
∑K

i=1 λiviv
>
i

where K is the selected dimension (where K ≤ D). We use the same three
strategies to set K that were used for the document representations (see end of
Section 3).

5 Experiments and Analysis

In previous work [9], we validated the subspace document representation on
a filtering task. In this paper, we explore both the document and the query
representations in an ad hoc retrieval task. In particular, we look at the effects

9The effect will be to give higher importance to superpositions of vectors ϕi who are similar,
i.e., whose cosine is closer to 1.
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Parameters Means

(1) Document fragment sentence (0.14) >> paragraph (0.12) >> document

(0.11)

(2) Weighting scheme

(document fragment)

tf (0.13) >> tf-idf (0.12), binary (0.12)

(3) Weighting scheme

(query)

tf-idf (0.13) >> tf (0.12), tf-idf > binary (0.12)

(4) Dimension selection

(document)

all (0.14) >> highest (0.11), mean (0.14) >> highest

(0.11)

(5) Dimension selection

(query)

all (0.13), mean (0.13), highest (0.12)

(6) Term weight in query idf (0.13) >> uniform (0.12)

(7) Query construction mixture (0.13), mixture of superpositions (0.13)

Table 1: Means of medians of average precision for each topic. The “>” (resp.
“>>”) sign is used to denote statistical significance at 0.05 (resp. 0.01).

of the parameters discussed in Sections 3 and 4. These are listed on the left
column of Table 1. As the parameters are mostly independent from each other,
we experimented with 756 settings; those not making sense were ignored10.

We used the INEX 2008 collection in our experiments because its documents
have markup (in XML format) delineating text units. The collection consists of
659,388 Wikipedia documents in XML format, using tags such as article, section
and paragraph to model a document logical structure [4]. INEX 2008 has 70
assessed topics, and for each topic, relevant passages in (pooled) documents were
highlighted by human assessors. A document containing a relevant passage is
assumed relevant, which is in accordance with Trec guidelines.

We preprocessed the documents by extracting the fragments, i.e., the whole
document, the paragraphs (as determined by the XML markup) and the sen-
tences11. We then stemmed and stopped (using the SMART list of stop-words)
the text fragments. For each term t, we computed an approximation of the
term density ρt (Equation 2) based on a sample of 10,000 documents (max-
imum) containing the term t and using a thin eigenvalue decomposition with
maximum rank set to 10 [12, pp. 171-181]. This value, chosen through exper-
imentation, represents a good trade-off between complexity and efficiency. For
each query q, we computed the query density ρq using the densities ρt of its
composing terms t, using either the simple mixture (Equation 3) or the mixture
of superpositions (Equation 4). Then, we first retrieved a set of 1,500 docu-
ments using BM2512 [14]. For each retrieved document d and each parameter

setting, we computed the projector Ŝd and computed a probability of relevance

as tr
(
ρqŜd

)
. We used this value to re-rank the documents.

Table 1 shows our results. For each parameter (left column), we show in
the right column the means of the medians of average precision computed for
the different settings of that parameter. For example in row (1), when the

10When using a whole document as fragment, the document subspace is one-dimensional
and in this case there is no point to investigate the dimension selection parameter.

11We use http://www.andy-roberts.net/software/jTokeniser/index.html for this.
12With the standard parameter values.
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Mixture of superpositions Mixture

∆AP Topic ∆AP Topic

0.22 social networks mining 0.32 ”records management” metadata

0.19 virtual museums 0.16 Tata Motors Company in India

0.10 genetically modified food safety 0.15 Nikola Tesla inventions patents

0.09 wikipedia vandalism 0.08 vodka producing countries

0.06 flower meaning 0.08 mahler symphony song

Table 2: Top five performing topics using, respectively, mixture of superpositions
(Equation 4) and mixture (Equation 3) as query representation.

fragment is “sentence”, this value is 0.14. To compare two settings, say “sen-
tence” vs. “paragraph”, we performed a paired t-test where each pair of samples
corresponds to the same topic and same parameter values (weighting scheme,
dimension selection, query term weight, query construction) but for the docu-
ment fragment setting. For this example, the result shows that using sentence
fragments outperformed paragraph fragments at a 0.01 significance level. We
discuss each result next.

For the document fragment parameter (1), the best performing setting was
with “sentence” followed by “paragraph” and “document”. Each time the differ-
ence was found to be significant at a 0.01 level. This indicates that the right
level of segmentation (to construct the pure IN vectors) is at sentence level.

Overall, the weighting scheme for document fragments and queries had some
effect on retrieval effectiveness. For building the query term density (3), the
tf-idf scheme led to significantly better results, whereas for document frag-
ments (2), the tf scheme performed better. The results are somehow in con-
tradiction with vectorial IR findings, but might stem from the fact that to build
the query term representation we sample much more vectors than for the doc-
ument one; hence in the former case it is important to weight terms according
to their importance (idf). When looking more in details into the results, we
also found out that the weighting scheme was highly dependent on the other
parameters, and should hence be chosen depending on them.

The setting of the subspace dimension has a different effect on documents and
queries. For documents (4), performance was improved using the full dimension
or the mean of the eigenvalues (to determine the dimension of the subspace
representation). This shows that using more than one dimension to represent
a document is beneficial. However, for queries (5) we observe only a slight
improvement when using multiple dimensions (none of which were significant).

For the query construction methodology, we first see that weighting the query
terms by their idf values outperformed using a uniform scheme (6). When look-
ing at a mixture vs. mixture of superpositions (7), no significant overall per-
formance difference exists. However, we observe different behaviours depending
on the topic. Table 2 shows the best performing topics for, respectively, the
mixture of superpositions and the mixture. The topics better handled by the
mixture of superpositions are topics for which the terms form a “concept”, for
example “social networks mining” where the three terms together have a specific
meaning. For the mixture, topics for which each term reflects a different aspect
of the topic, e.g. “”records management” metadata”, where “metadata” and “re-
cords management” are the two different concepts, had a better performance.

9



This indicates that selecting the query density computation according to the
topic may prove beneficial.

The above example suggests that it may be beneficial to treat parts of
the query differently by combining both construction methods into one query.
For example, the terms “records” and “management” form a single aspect and
should thus be superposed. Afterwards, the superposed terms should be mixed
with “metadata”, which describes another aspect, to answer the query “”records
management” metadata”. In general, to determine which terms form a single
concept, we can rely on explicit markers like quotes in this example, or on an
automatic algorithm based e.g. on co-occurrences.
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Figure 3: Boxplot of the effect of
query length (number of terms) on
average precision. The x-axis is the
query length (number of terms) and
the y-axis is the difference in av-
erage precision between BM25 and
our method in different settings.

We also compared our results to
a state-of-the-art retrieval IR system,
namely BM25 [14]. We found that the
performances of our framework were con-
sistently lower in average (using stand-
ard IR evaluation metrics). A brief
analysis (not reported here) comparing
the results of the best performing con-
figurations with BM25 for the topics in
Table 2 reveals that we could get closer
to BM25 performances by (again) choos-
ing the right query construction method-
ology (mixture vs mixture of superposi-
tions).

Finally, we investigated the effect
of query length (number of terms) and
the number of relevant documents (of a
query) on retrieval effectiveness. No cor-
relation was found between the difference
in performance between BM25 and our
framework, and the number of relevant
documents. There was however a strong
dependency on the query length. As illus-
trated in Figure 3, when the query length is one (there is no difference between
the two query density construction methods), our approach outperforms con-
sistently BM25; when the number of terms in the query increases, retrieval per-
formance drops. This further confirms that the appropriate calculation of the
query density – in particular for multi-term queries – needs to be investigated.

6 Conclusion and Future Work

In this paper, we presented a methodology to build multidimensional represent-
ations of documents and queries. These representations are inspired from the
geometric/probabilistic framework of quantum physics. The latter allows us to
compute probabilities of relevance based on a more complex representations of
documents than a simple bag of words, namely, a multidimensional one based on
document fragments. We believe that such a multidimensional representation
is key to a successful framework for exploiting user’s interaction [13].

We performed experiments to explore various parameters influencing the ef-
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fectiveness of our representations. We showed that using more than one dimen-
sion to represent documents improves performance, confirming previous results.
Considering a document as a fragment, as done in most classical models, is
not sufficient to distinguish between the different information needs a document
covers. Indeed, while most of the classical models only take the mere occur-
rence of a term into account, we showed in our experiments that the vicinity of
terms (the fact that they appear in the same fragment) plays an important role.

We also explored two different and principled ways to construct the query
representation. We have shown that queries whose terms define a concept and
those whose terms are more independent are better handled by two different
methods, respectively, the mixture of superpositions and the (simple) mixture.
This suggests that we can gain further improvements if both strategies are ap-
plied together in an adaptive manner. This is part of our future work.

As our representation of queries and documents aims at tackling interactive
IR, this works validates our framework for the most common first interaction
step between a user and an IR system – a user typing a query. Exploiting further
interaction steps (for example viewing or saving a document), is also part of our
future work.
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