
Predictive User Click Models Based on Click-through
History

Benjamin Piwowarski
Yahoo! Research Latin America

Santiago, Chile
bpiwowar@yahoo-inc.com

Hugo Zaragoza
Yahoo! Research Barcelona

Barcelona, Spain
hugoz@yahoo-inc.com

ABSTRACT
Web search engines consistently collect information about users in-
teraction with the system: they record the query they issued, the
URL of presented and selected documents along with their ranking.
This information is very valuable: It is a poll over millions of users
on the most various topics and it has been used in many ways to
mine users interests and preferences. Query logs have the potential
to partially alleviate the search engines from thousand of searches
by providing a way to predict answers for a subset of queries and
users without knowing the content of a document. Even if the pre-
dicted result is at rank one, this analysis might be of interest: If
there is enough confidence on a user’s click, we might redirect the
user directly to the page whose link would be clicked. In this paper,
we present three different models for predicting user clicks, rang-
ing from most specific ones (using only past user history for the
query) to very general ones (aggregating data over all users for a
given query). The former model has a very high precision at low
recall values, while the latter can achieve high recalls. We show
that it is possible to combine the different models to predict with
high accuracy (over 90%) a high subset of query sessions (24% of
all the sessions).
Key References: [10, 12]

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Theory, Algorithms, Experimentation

Keywords
Web Retrieval, Query log analysis, User modelling, re-finding, re-
peat queries

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’07, November 6–8, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-803-9/07/0011 ...$5.00.

1. INTRODUCTION
Social search is quickly gaining acceptance and is increasingly

seen as a promising way of harnessing the common knowledge
of million of users to help each other and search more efficiently.
Users are increasingly understood as the driving force of the inter-
net and many initiatives are aimed at empowering them. Besides
explicit user provided information, there exists very large sources
of implicit user information in the internet logs that record user
acts. In particular, search engines keep records of their interaction
with users in click-through logs, which record some sort of user
id (through login or cookies), the queries issued by the user, the
results returned by the engine and the resulting user clicks.

User clicks on hyperlinks are a soft source of endorsement, since
users tend to click on documents they are interested in. For this
reason click-through logs are the source of growing attention in the
search community. In this work we will analyse query logs from a
novel perspective, concentrating on their click predicting ability.

In particular we are interested in predicting which document a
user will click on immediately after the issuing a query. We are
interested in models that can accurately predict these clicks, but
more importantly we are interested in models that can predict the
confidence of the prediction. This is important because we wish
to be conservative: we are happy not to make a prediction, but if
we make a prediction we want to be confident that this prediction
is correct. One can imagine a number of applications for these
models, if sufficient accuracy can be achieved. For example, in a
result page we could highlight the page that we believe is the one
the user will choose, or directly take the user to that page.

We do not pretend that it is possible to predict with high accuracy
the target page of a user for most queries. If a user types ”Italian
cooking” into a search engine, it is hard to tell if the user wants a
restaurant, a book, a history page, the page on cooking the user saw
last week and really liked, etc. However, we believe that we can
achieve high accuracy for some queries. In particular, there are two
types of queries that we hope to predict with high accuracy.

The first type of prediction we are interested arises when users
re-find information. Users commonly follow known paths when
searching [3] for information they already found. More specifically,
they will tend to re-issue a query when searching for a document
they found thanks to a search engine. Our work was motivated by
the research on click-through logs carried out by Teevan et. al. [10,
11] that analyses this user behaviour. They studied click-through
logs and found that 40% of all queries lead to a click on a result
formerly clicked by the same user during a previous session. Fur-
thermore, 71% of the queries leading to repeated clicks by a user
were identical (same string), and 87% of identical query re-writes
led to repeated clicks. Only 14% of the queries leading to a re-
peated click also led to a click on a new (previously unclicked)

175

document. Furthermore, on average 28% of documents clicked by
a user received more than one click by that user that year. On the
other hand, only 7% of clicks were clicked by multiple users. With
this study, Teevan et. al. clearly showed the important role that
re-finding plays in web search today. They went on to build models
which predict whether a user query is a re-find or not.

In this paper, we go one step forward and we build models which
predict, not only if a re-find is taking place, but also what is the
user’s target page, and which is the confidence of our prediction.
We refer to such type of models as user-centric or user models.
Furthermore, we generalise the concept of re-finding to take into
account not only queries issued by the user in the past, but also
queries issued by similar users; we refer to these as user-group
models. Finally, we can extend our models to deal with simple
navigational queries that many other users have issued in the past
and agreed on (i.e. “BBC”, “KLM”, etc.). We refer to these models
as global.

We note here the difference between this type of predictive mod-
els and personalisation models. Personalisation models attempt to
produce better result rankings; this is done by building a model of
the user, and then biasing the general ranking function with the user
model to improve relevance. In our work we are trying to achieve
something else: predicting with high confidence the target page of
a user involved in a re-finding activity. In fact, personalisation is
a complementary problem to this one, and indeed personalisation
models could be used simultaneously to the prediction models de-
scribed here.

This paper contains a number of novel ideas:

• it sets up the task of “click-prediction”, defines it formally
and describes a number of evaluation measures that can be
used to test systems,

• it proposes a new framework for click-prediction using stan-
dard Bayesian inference models,

• it proposes three alternative models of different characteris-
tics: user centric, global and group based, as well as a com-
bination method.

Furthermore it evaluates the different models as well as a baseline
in real click-through data from a commercial search engine. Our re-
sults show that predictive models can be used effectively to greatly
improve the search experience on the web.

2. PREDICTING USER CLICKS
In this section we will give our formal definition of the problem

of predicting user clicks and present a naïve baseline model. Fur-
thermore we will propose some evaluation measures for this prob-
lem. To our knowledge, the problem definition and the measures
are novel.

2.1 Notation
Assume that we recorded the queries and clicks of users over a

period of time. We call a query session s := (u, q, t,D) the tuple
denoting a user u, a query q, a time t, and a sequence of clicked
documents D :=

`

d1, ..., d|D|

´

. For a given session s, we use qs,
us, etc. to denote the different elements in s (the query, the user,
etc.). We note the sets of users, sessions and queries U , S andQ.
We note Su the set of all the sessions by the user u, and Suqthe
subset of these with the same query q. We can count the different
clicks issued by users on specific documents and queries. The basic
counts from which the rest are derived are called click counts:

vuqd := |{d ∈ Ds| s ∈ Suq}| .

To simplify notation, we have dropped the dependency of the
different quantities with respect to the time t. It will be implicit
for the remaining of the paper that any computation or prediction
made at time t can made using of (but only of) the sessions in the
past {s|ts < t}.

Furthermore, we will compute click counts in two alternative
ways. We will either count all clicks or single clicks. All clicks are
straightforward counts over the click-through data. When count-
ing single clicks, we eliminate all the sessions for which the user
clicked more than once (i.e. |D| > 1). Clicking on a single docu-
ment may be a stronger indication of user satisfaction than clicking
on several. If the user did not try anything else, she was probably
satisfied with the first answer. On the other hand it is possible that
after observing a single document she abandoned altogether or she
re-issued a new query.

Our objective is to define models which makes predictions of
clicks. We will study this from the point of a Bernoulli process:
a sequence of binary events. After a user u issues a query q, we
assume that she is presented with a single document d. This event,
notedψuqd, has two possible outcomes: the user either clicks on the
document (ψuqd = 1) or not (ψuqd = 0). This process is repeated
many times. We will build different estimators of Pr(ψuqd = 1)
using different assumptions.

A prediction Ψuq ∈ {W, ∅} is a choice of a document for a given
user and query at a given time. We want to allow ourselves to be
conservative so we allow null predictions (∅), particularly for the
cases were there is not enough confidence in any particular predic-
tion. A prediction model will always follow the two steps:

d∗uq = arg max
d

{Pr(ψuqd = 1)} ,

Ψuq =



d∗uq if χqud ≥ ρ
∅ otherwise

.

where χqud is some measure of confidence on our prediction d∗.
Different estimators of Pr(ψuqd = 1) and ofχwill lead to different
predictions.

There are various ways to deal with equality, i.e. when there
is more than one document with same value of Pr(ψuqd = 1).
One could select one document randomly, or to make a null pre-
diction since there is no preference and we are targeting one click
sessions. We chose the latter in our experiments since introducing
randomness in our model did not match one of our requirements,
controlling the confidence of the model.

2.2 Measuring performances
To measure performances, we define a precision-recall metric.

In order to measure different aspects of our prediction, we compute
the expectation over the users and queries. Doing so allows us to
give, for example, an equal importance to each user or, in the op-
posite, an importance proportional to the number of times the user
asked a query. We consider prediction to be correct if the predicted
target page for session s (noted Ψs) was clicked by the user in that
session (that is, if Ψs ∈ Ds).

recall = E

„

|predicted sessions|
|sessions|

«

=
X

u

X

q∈Qu

|{s ∈ Suq|Ψs 6= ∅}|

|Suq|
Pr(q|u) Pr(u)

176

precision = E (PM)

=
X

u

X

q

PM(u, q) Pr(q|u) Pr(u)

where:

• Ψs is the prediction we made for session s.

• PM(u, q) is the percentage of good predictions for a given
query and a given user.

• Pr(u) is the probability of a user, which can be set to 1
|U|

where |U| is the number of users (uniform probability, equal
importance to every user) or |Su|

|S|
(importance proportional

to the number of sessions)

• Likewise, Pr(q|u) can be |Suq|
|Su|

(importance relative to query
frequency) for a query the user asked, and 0 otherwise. Other
probabilities like 1

|Q|
(uniform probability) are not adapted

since the performance measure is not defined for queries the
user did not ask.

We experimented with many of these combinations, but it did not
change the relative benefit of the models. Therefore we report on
the simplest: each session has the same weight:

Pr(u) × Pr(q|u) =
|Su|

|S|
×

|Suq|

|Su|
=

|Suq|

|S|

2.3 Naive models
Figure 1a shows the probability that a user will click on a doc-

ument after a query as a function of the number of times the user
has already clicked on the same document for the same query in the
past. This is equivalent to a model where Pr (ψuqd = 1) ∝ vqud.
If we count all clicks, we see that this probability is more than
half for documents that have been clicked at least once, and grows
quickly to over 0.95. The behaviour is very similarly for single
clicks, but the starting point is much higher (0.8 instead of 0.55).
This confirms the hypothesis that single clicks are more informa-
tive. Figure 1b shows the histogram of the number of previous
clicks on that document for every user click.

The statistics in 1 give us an idea for a baseline model: predict
the most clicked page if it has been clicked above a certain number
of times. This can be done with:

Pr
B

(ψuqd = 1) =
vqud

P

d′ vqud′

χqud = vqud

This will be very precise for queries that the user repeats often
to re-find pages. It will be very unprecise for queries that the user
issues rarely, or queries for which the user is exploring for new
information rather than re-finding. Furthermore, it will not be de-
fined for any queries that the user has not previously typed. We
refer to this type of model as a user-centric because it depends on
the document, the query and the user.

In fact the performance of this estimator can be estimated di-
rectly from Figure 1. For example, if we set the threshold to ρ = 3,
we would make a prediction for roughly 14% of the queries a user
types, and we would be correct roughly 95% of the times we make
a prediction.

As we can see, this baseline can reach very high accuracy, but
this comes at the price of being very conservative (i.e. not making
any predictions for 86% of the queries).

2.4 Probabilistic models
We wish to improve over the baseline models proposed above in

a number of ways. First, we do not want to have to choose a priori
a value for the threshold ρ: this value should depend on the click
distribution of each query. Very consistent queries should require
little evidence, whereas noisy queries should require more. To take
this into account we will use Bayesian estimators, which integrate
naturally the notion of confidence in the absence of the infinite data.
Second, we wish to extend our predictions to queries that the user
never typed; for this, we will extend the notion of re-finding.

We wish to model the likelihood p(ψuqd = 1|L) considering
our data as coming from a Bernoulli process of clicks and no-
clicks, where L is any available past information that can modify
our knowledge on ψuqd. In the Bayesian framework this likelihood
is the result of integrating all the possible Bernoulli models (that is
over all possible values of the probability θ of success), weighted
by their likelihood given past information L:

Pr(ψuqd|L) =

Z

θ

p(ψuqd|θ) p(θ|L) (1)

The advantage of using Bayesian estimators is that they will nat-
urally be pulled towards their prior likelihood p(θ) in the absence
of sufficient data. Choosing the prior likelihoods appropriately, the
estimators will be naturally conservative in the absence of strong
evidence1 . This will allows us to trust their estimation directly, not
only for prediction but also to determine our confidence. In other
words, when using Bayesian estimators we will set:

χuqd = Pr(ψuqd = 1|L)

This way we can set ρ to some global fixed value (0.95 for exam-
ple), and the implications of this will be handled by the estimator
automatically for every model.

A natural choice of prior for the Bernoulli is its conjugate prior,
the beta distribution β(θ; a, b) with parameters a, b > 0. These
parameters correspond to pseudo-counts or fictitious a priori obser-
vations of events, in our case clicks on the document or on other
documents respectively. Their ratio a

a+b
determines the a priori

likelihood of a click on the document, and the magnitude a + b
determine the strength of the prior over the observations.

Without any information, i.e. when L is empty, the prior is gov-
erned by the a priori parameters a and b, and is given by:

p(θ|L = ∅) = p(θ) = β(θ; a, b)

As we gather more and more information, we need to update
our prior on θ. As the beta distribution is a conjugate prior of the
Bernoulli process, the posterior distribution of the parameters when
some data is available is a simple count of positive (clicks) and
negative (non clicks) events in the Bernoulli process that we add
to the fictitious observations. Using the Bayes law, the posterior
distribution of a beta distribution, knowing observations coming
from a Bernoulli process, is given by:

1We note that in frequentist (non-Bayesian) statistics this can also
be achieved by smoothing the estimators of frequency (maximum
likelihood estimators) so they are robust to small data sets; we have
chosen the Bayesian framework instead because we are more fa-
miliar with it.

177

(a) Probability of a click (b) Cumulated frequencies (log scale)

Figure 1: Probability of clicking on the same document given the number of previous clicks. With “all” we count all the clicks while
with “Single” only single clicks are accounted for. The data used for this graph is described in Section 3.1.

p(θ|L) =
Pr(L|θ) × p(θ)

R

θ
Pr(L|θ) × p(θ)

(2)

Eq. (2) can be solved analytically (see [6] for a full development):

p(θ|L) = β(θ ; a+ |Sd| , b+ |S\Sd|) (3)

where S denotes the set of events considered, Sd denotes the subset
of positive events and S\Sd the subset of negative ones. In our
case, S are the sessions considered in the model and S = {s|ds =
d, s ∈ S} the subset of these which lead to a click on d. Plugging
Eq. (2) into Eq. (1), we can write the solution to (1) analytically:

Pr(ψuqd = 1|L) =

Z

θ

θβ(θ ; a+ |Sd| , b+ |S\Sd|) (4)

=
a+ |Sd|

a+ b+ |S|
(5)

There are several choices to construct such sets. We will explore
two options for S and Sd, namely user-query models and global-
query models. In the first case we build a model for each query q
of each user u independently, using only data coming for that user,
whereas in the second model we mix all the users together into one
group:

user-centric model: Pru(ψuqd = 1) is obtained from (4) using
S = Squ := {s |us = u, qs = q}. We compared this ap-
proach to the maximum likelihood (MaxLk) approach, which
is simply obtained setting the a priori parameters a and b to
0.

global model Prg(ψuqd = 1) is obtained from (4) using S =
Sq := {s | qs = q}.

In order to fix the values of the hyperparameters a and b, we used a
standard optimisation technique [7] described in Appendix A. We
found values for a and b of 1 and 0.3 for the user-centric model, and
29.7 and 6.8 for the global one. In both cases, there is a favourable
a priori on the document. This was expected since the parameters

are computed for documents in the set of those already clicked by
the user(s). Note also that the a priori parameters for the global
model are much higher than those of the user model. This implies
that the user centric model will be much more influenced by new
observations.

2.4.1 Dynamic sets of users
In the previous section, we explored how we can confidently pre-

dict a document for a user-query pair. We can use this information
to build groups of related users. When a user-query pair does not
have enough related past information to predict confidently a doc-
ument, this information can still be used to find an already existing
group of users that is close to the user. We construct such groups
such that to each group corresponds one and only one document to
be predicted with high confidence.

To build such groups, we would like to group users that would
click on the same document for the same query. Since this informa-
tion is not available, we use the user model defined in the previous
section, and group users that would be, for a given query, predicted
the same document. Let us define the user group Gqd as the set of
users that would be predicted the document d for the query q:

Gqd = {u |Ψuq = d}

This definition is deterministic at each time t since predictions
are deterministic. We can define click counts for a group as follows:

vgqd :=
X

u∈Gqd

vuqd (6)

These clicks take only into account the users that are highly re-
lated to a group of users who click on d for query q with a high
confidence. In other words, it ignores clicks from users who do not
prefer the document d clicked. With these counts we can compute
our third type of predictive model:

group model Pgqd∗(ψuqd = 1) is obtained by multiplying the
probability Pr(Gqd∗ |u) that the user belongs to the group
with (4) using the same Sq as for the global model but using
the counts from (6).

178

Computing the probability P (Gqd |u) can be done in a num-
ber of ways. Here we assume that the user belongs to the
group unless there is a very low probability that he will not
click on the document d, or equivalently if there is some sup-
port to the fact that he will click on document d link. The
probability that the user belongs to the group is defined for-
mally as:

Pr(Gqd |u) = Pr
ˆ

β (θ ; a+ |Sd| , b+ |S \ Sd|) ≥ ρ′
˜

The threshold was set empirically to the value 0.9 using the
development set.

The interest of group models is that they pool clicks from similar
users, allowing the confidence to grow much faster. If a user clicks
on a document once, but there are many similar users who also
clicked on it, we can be confident that this document is a target.

2.4.2 Combining predictions
Each one of the three models proposed has different characteris-

tics. For example, global models can be very accurate for popular
navigational queries whereas user models can be very accurate for
user specific re-find queries. Since the models seem complemen-
tary, it makes sense to combine them into a single model.

We are currently working on probabilistic models that can com-
bine all the methods, but this work is not completed. Instead,
we propose here a simple ad-hoc method to learn the combina-
tion of the models. The method is based on one RankBoost algo-
rithm [5] described in Appendix B. We call this model the Rank-
Boost model. Other models for combination can be used, but Rank-
Boost had the advantage of working well with ranking models like
ours.

3. EXPERIMENTS
In this section, we report experiments with the three models:

user-centric, community and global. We report results of individual
models as well as the combination model.

3.1 Data
We made use of click-through logs from the Yahoo search engine

over a period of 57 days. In order to associate users with a queries,
we eliminated from the log all the users for which we did not have
a unique ID (i.e. users not logged into the search engine).

In order to establish user sessions we used a timeout of thirty
minutes: every click related to the same query and user within thirty
minutes was considered to be within the same session. This thresh-
old was suggested by [11]. We verified this threshold with our data:
in Figure 2 we plot the distributions of time differences between
two consecutive clicks of the same user for the same query (for all
users and clicks in the 57 days). We see that the clicks decrease ex-
ponentially between 10 and 100. Average query length computed
by removing non alphanumeric characters and one letter words was
of 2.9 words which is also comparable to values reported in the lit-
erature [12, 11].

Queries were not normalised lexically or semantically in any
way. This could be an issue, since a small scale experiments about
refinding has shown that within a single hour, only 72% of users
remembered exactly a query. This is something we may try to im-
prove in future experiments. However it is difficult to normalise
queries semantically with introducing much noise (i.e. by confus-
ing two different user intents). A consequence of this choice is that
the model favours high precision to high recalls.

Figure 2: Percentage of events within a given time frame. The
30 minutes limit is the dashed straight line.

Another open issue is the fact that our query logs did not contain
information about URLs that were not selected by users, and con-
sequently of the rank of the URLs clicked. This has a direct effect
on performance analysis, because we cannot know whether a URL
was not clicked upon because the user saw refused it or because
it was not even presented to the user. Moreover, as stated in [11],
the simple change in presentation order (27% of reclicks are at a
different rank as they were for the first click) decrease the number
of re-clicks. We ignore these facts in our work.

3.2 Results
In Figure 3, we plotted the precision of the different models with

respect to the recall measure described before for all click counts.
The curves were obtained by using different threshold values on
χqud. The left hand side graph (a) is a zoom of the right hand side
graph (b) for low values of recall. In this graph we can see the per-
formance of the user-centric methods, which cannot predict beyond
13% of recall. First we note that the baseline method (Count) per-
forms worse than the other methods in general, but nevertheless it
has some predictive power: for 1% of sessions they can predict the
target page with 90% accuracy! The maximum likelihood (MaxLk)
method performs similarly to the count method, but is not able to
distinguish the cases where there was only a few – one or two –
sessions from the cases where there are more. Consequently, this
model is not able to reach high precision values for lower recall val-
ues. Probabilistic models (User, Group and Global) are much better
than the baseline for very low recall regions: they can build confi-
dence faster than the counting method. However they are similar to
the baseline for high recall levels (beyond 10%). It seems that our
naive method of assigning group membership is not sufficient to
increase the precision. We plan to investigate this further in the fu-
ture. Global methods reach much higher recall values (up to 50%)
as expected, but surprisingly they seem almost as accurate at the
low recall (high rejection) end. The probabilistic global model out-
performs the baseline for all values of recall. It also outperforms
the probabilistic user-centric models for all recalls beyond 0.06.
This is impressive and unexpected. Finally, the RankBoost method
successfully combines the different methods producing model that
outperforms all others for all ranges of recall. Furthermore, the
combination model is almost 5% better than the global one consis-
tently for all values of recall.

179

(a) low recall range (zoomed view of graph on the right) (b) all achievable recalls

Figure 3: Recall-precision for different models (the right plot is a blow up of the top left corner of the left plot). Different recalls
correspond to different ρ thresholds. For example, if we predict for only the 10% most confident sessions, the combination method
achieves over 95% accuracy whereas the baseline count model is under 90%. User-centric methods cannot predict beyond 13% of
recall, whereas global methods reach 50%.

Figure 4: Number of sessions (for predicted or not predicted
results) with respect to the rank.

These are very encouraging results. It means that we can hope to
predict the target page of a user 50% of the time with an accuracy
of 75%, or alternatively 5% of the time with an accuracy of 98%.
Such high accuracy can open up the way to new forms of search
interfaces which will pro-actively highlight or open the predicted
target pages.

In the following we will analyse further two aspects of our mod-
els to gain insights on how this accuracy is being achieved by the
different models. The first question we pose is: how many of these
predictions were already ranked 1 by the search engine without any
history information? To some degree, predicting correctly a click
on rank 6 is more useful to the user than predicting correctly a click
one at rank 1. In Figure 4, we plotted the percentage of predictions
we made and the percentage of clicks given a rank. For instance,
9% of the good predictions where documents at a rank superior or

equal to 2. This should be compared with the click behaviour of
users, who click at rank 2 or more 60% of the time. We can also
remark that the more specific strategy, the higher the ranks of the
predicted documents, and therefore the more useful the prediction.
We note however than even if all our predictions were at rank=1,
our models would still be very useful because they do not only pick
a document, they also decide when to predict and when not to. This
confidence feature is useful to design search interfaces that do not
solely rank documents; for example, if we wish to highlight the
predicted document, open it directly on a browser window, etc.

The second analysis is about the relationship between single click
and all click ways of computing the counts. In Figure 5, we plotted
the distribution of the number of clicks per session for our different
methods. We can observe that all models predict mostly one click
queries (more than 80% of the cases). The combination method
makes more predictions for multiple click sessions. It shows that
combining the informations from the different models can be very
advantageous, since it allows to predicts clicks in multiple clicks
sessions.

4. DISCUSSION
Recently there has been some work on user refinding behaviour,

which can be roughly divided between qualitative studies and quan-
titative studies. Qualitative studies aim at analysing how the user
is searching some information he/she has already seen. As users
have to be recruited for the experiments, these studies are typically
conducted on a small number of users and queries for which de-
tailed information is collected, including the navigation behaviour
of the user (going back, using the history of the browser, etc.). On
the opposite, quantitative studies use only basic information (clicks,
query string, time stamp, etc.) collected by the search engine. They
aim at providing statistics on how to characterise clicks of users
trying to re-find information. As they use server side log data,
they don’t need to actively involve the user into the experiments,
and hence can be conducted with a great amount of users and/or
queries. Our work belongs to this latter category.

180

Figure 5: Average number of clicks in sessions in general and
predicted sessions.

Within qualitative studies, we can cite [3, 1], authors study the
key strategies for information re-access and underline the fact that
search engines are widely used for this task, although this “strategy
has problems as it is difficult to remember the exact search terms
used to find the material in the first place”. While we did not study
the query reformulation between queries issued by the same user
while searching for the same information, we found out that the
already available information is enough to ease refinding.

Wedig et al. [12] studied the amount of data that is available for
personalisation, and found out that even when users are not logged
it is possible to use cookies: In this case, the amount of information
is enough to personalise the search results. They also presented
some results on the amount of information provided by a click, and
could be useful in an extension of our work to predict user interests
in general in order to build other groups of users.

Using web logs, Tauscher and Greenberg [8] have found out that
people tend to revisit a considerable number of web pages: They
found a 58% probability that the next page visited was previously
seen. Noticeably, they also found out that users visit a few web
pages frequently. This matches our findings, since people tend to
use bookmarks queries for the few web sites they visit frequently,
hence providing one possible explication for the good results of our
predicting models.

Dumais et al. [4] proposed a system for facilitating information
re-use that provide meta-information about the searched results.
The Re:Search search engine [9] was designed to help people return
to information in the dynamic environment of the Web by maintain-
ing consistency in the search results it returns across time through a
mechanism of cache of past queries and merge between past clicked
results and current results returned by an external search engine.

As mentioned in the introduction, the work of Teevan et al. [11]
inspired this paper. In their work, they focussed on the analysis of
navigational repeated queries. They also designed a Support Vec-
tor Model to predict whether or not a result would be clicked, and
whether or not a previously clicked document would be clicked.
The difference with our work is that they did not focus on models
where misclassification error can be controlled, and did only con-
sider previous clicks from the same user.

Web search queries can be categorised into different categories [2].
In this article, we have shown that it is possible to use past clicks

Figure 6: Number of distinct queries per document

to predict with high accuracy (over 90%) a high subset of query
sessions (24% of all the sessions), that shows that we are able to
predict most of the navigational queries with high accuracy.

Finally, we can improve our model by taking into account mul-
tiple queries. To investigate if this is worthwhile, we plotted in
Figure 6 the number of distinct queries per document. We can see
that the far majority of documents are clicked for a unique query,
but that there is still a great number of documents that were clicked
for more than one query. This shows that there is some information
that can be exploited there.

We are currently working on using complete (including not clicked
results displayed to the user) query logs for a larger time frame (one
year) for a subset of users. We don’t expect our findings to be
changed, although it would be interesting to take into account the
time in our models.

Another important direction would be to cope with informational
queries. The difficulty lies in the variability of the user clicks and
of the queries. It would be interesting to look at query chains (re-
formulations) for this purpose.

5. REFERENCES
[1] Anne Aula, Natalie Jhaveri, and Mika Käki. Information search and

re-access strategies of experienced web users. In Allan Ellis and
Tatsuya Hagino, editors, WWW, pages 583–592. ACM, 2005.

[2] Andrei Broder. A taxonomy of web search. SIGIR Forum,
36(2):3–10, 2002.

[3] Robert G. Capra and Manuel A. Pérez-Quiñones. Using web search
engines to find and refind information. Computer, 38(10):36–42,
2005.

[4] Susan Dumais, Edward Cutrell, J. Cadiz, Gavin Jancke, Raman
Sarin, and Daniel C. Robbins. Stuff i’ve seen: a system for personal
information retrieval and re-use. In SIGIR ’03: Proceedings of the
26th annual international ACM SIGIR conference on Research and
development in informaion retrieval, pages 72–79. ACM Press, 2003.

[5] Yoav Freund, Raj Iyer, R. E. Schapire, and Yoram Singer. An
efficient boosting algorithm for combining preferences. Journal of
Machine Learning Research, 2003.

[6] David Heckerman. A tutorial on learning with bayesian networks.
Technical Report MSR-TR-95-06, Microsoft Corporation, Redmond,
WA, USA, November 1996.

[7] Robert B. Schnabel, John E. Koonatz, and Barry E. Weiss. A
modular system of algorithms for unconstrained minimization. ACM
Transactions on Mathematical Software, 11(4):419–440, 1985.

[8] Linda Tauscher and Saul Greenberg. How people revisit web pages:
empirical findings and implications for the design of history systems.

181

International Journal of Human-Computer Studies, 47(1):97–137,
1997.

[9] Jaime Teevan. The Re:Search engine: Helping people return to
information on the web. In Proceedings of the 28th Annual ACM
Conference on Research and Development in Information Retrieval,
Seattle, WA, October 2005.

[10] Jaime Teevan, Eytan Adar, Rosie Jones, and Michael Potts. History
repeats itself: repeat queries in yahoo’s logs. In SIGIR, pages
703–704, 2006.

[11] Jaime Teevan, Eytan Adar, Rosie Jones, and Michael Potts.
Information re-retrieval: Repeat queries in yahoo’s logs. In
SIGIR’07. ACM, 2007.

[12] Steve Wedig and Omid Madani. A large-scale analysis of query logs
for assessing personalization opportunities. In Proceedings of the
Twelfth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2006.

APPENDIX
A. SETTING THE A PRIORI

HYPERPARAMETERS
In order to set the a priori hyperparameters, we used data from

the first part of the logs. For some configurations of n = |S| and
p = |S \ Sd|, we can count the number of times o(n, p) the user
clicked on the document d link and the number of timeO(n, p) this
configuration occurred. We can then compare the observed number
of clicks o(n, p) to the expected one E(# clicked/β(a + n, b +
p)). As we can suppose that the events (clicking on document after
having clicked on it n times out of n+p sessions) are independent,
the expected number of clicks is simply

E(# clicked/β(a+ n, b+ p)) = O(n, p) × E(β(a+ n, b+ p))

= O(n, p) ×
n+ a

n+ p+ a+ b

We then optimised the mean square error between the observation
and the expectation to set the a and b parameters:

(a, b) = argmin
(a,b)

X

n,p

„

o(n, p) −O(n, p)
n+ a

n+ p+ a+ b

«2

where there is o(n, p) sessions out of O(n, p) where a user, who
had already clicked n times out ofN sessions on a given document,
clicks on it again. We minimised the function using a Newton-type
algorithm [7], and found priors of 1 and 0.3 for the user model, and
29.7 and 6.8 for the global one.

We did not choose to optimise the maximum likelihood as we
had many cases where either all the users clicked on the document
or none of them did, yielding infinite values in the optimisation
criteria.

B. COMBINING MODELS: RANKBOOST
We adopted the RankBoost algorithm [5], a boosting algorithm

for combining models. RankBoost is a machine learning algorithm
that searches an optimal combination of several weak or uncertain
classifiers, which are in our cases the different models for URL
prediction. Each of the above described models can compute a
score for a document d, a query q and a user u. The corresponding
scores are the input to the RankBoost algorithm.

Thanks to the fact that the decisions are binary, we used the sim-
plest version of the RankBoost algorithm (RankBoost.B): At each
iteration i of the algorithm, a base model m(i) is chosen, along
with a threshold score and a weight αi. This gives rise to a thresh-
old function fi which equals 1 if pm(i)(ψuqd = 1) is above the
learnt threshold and 0 otherwise. As user level models cannot com-
pute always a score, a predefined and learnt value qi is used for fi if
pm(i) is not defined (because we do not have any past information
for a given model).

fi(pm(i)(ψuqd = 1)) =

8

>

<

>

:

qi if pm(i) is not defined
0 if pm(i) ≤ Thresholdi

1 otherwise

In our experiments, we performed 1000 iterations of the algo-
rithm which are sufficient for stabilisation of the performance over
the training set.

The result of learning is a set of step functions fi, one for each
base model. The final probability of an URL d for a query q is
given by

prankboost(ψuqd = 1) ∝
X

i

αifi(pm(i)(ψuqd = 1))

We furthermore required that each function fi is decreasing with
respect to the score vi, in order to avoid over-fitting as suggested
by the authors. The consequence is that αi > 0 for any i and thus
that vrb is an increasing function of the vi: The learnt function can
be seen as a combination of monotonic increasing step functions of
pm(ψuqd = 1)

182

