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Abstract. We consider the problem of node classification in hetero-
geneous graphs, where both nodes and relations may be of different
types, and different sets of categories are associated to each node type.
While graph node classification has mainly been tackled for homoge-
neous graphs, heterogeneous classification is a recent problem which has
been motivated by applications in fields such as social networks, where
graphs are intrinsically heterogeneous. We propose a transductive ap-
proach to this problem based on learning graph embeddings and model
the uncertainty associated to the node representations using Gaussian
embeddings. A comparison with representative baselines is provided on
three heterogeneous datasets.

Keywords: node graph classification, representation learning, gaussian
embeddings

1 Introduction

Classification of nodes in graphs is a relational classification problem where the
labels of each node depend on its neighbors. Many problems in domains like im-
age, biology, text or social data labeling can be formulated as graph node classifi-
cation and this problem has been tackled with different approaches like collective
classification [21], random walks [1], and transductive regularized models [10].
Most approaches consider homogeneous graphs, where all the nodes share the
same set of labels and operate an iterative label propagation from seed nodes
to their neighbors. Many problems in domains like biology or social data anal-
ysis involve heterogeneous networks where the nodes and the relations between
nodes are of different types, each node type being associated to a specific set
of labels. For example, the LastFM social network, one of the datasets used
in our experiments, links users, tracks, artists and albums via seven different
types of relations such as friendship, most listened tracks, and authorship. In
such a network, nodes of different types influence each other and their labels
are interdependent. The dependency is however more complex than with ho-
mogeneous networks and depends both on the nodes type and on their specific
relation. Classical methods for homogeneous graphs based for example on label
propagation, usually relies on a simple relational hypothesis like homophily in
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social networks. They cannot be easily extended to heterogeneous networks, and
new methods have to be developed for dealing with this relational classification
problem.

In this paper, we consider the problem of node classification in heterogeneous
graphs. We propose a transductive approach based on graph embeddings where
the node embeddings are learned so as to reflect both the classification objective
for the different types of nodes and the relational structure of the graph. When
most embedding techniques consider deterministic embeddings where each node
is represented as a point in a representation space, we focus here on density
based embeddings which allow us to capture some form of uncertainty about
the learned representations. Uncertainty can have various causes related to the
lack of information (isolated nodes in the graph) or because of the contradic-
tion between neighboring nodes (different labels). Our hypothesis is that, be-
cause of these different factors, training will result in learned representations
with different confidence, and that this uncertainty is important for this classi-
fication problem. For that, we will use Gaussian embeddings which have been
recently proposed for learning word [23] and knowledge graph [7] embeddings in
an unsupervised setting. More precisely, we make each graph node representa-
tion correspond to a Gaussian distribution where the mean and the variance are
learned. The variance term is a measure of uncertainty associated to the node
representation. The objective function is composed of two terms, one reflect-
ing the classification task and the other one reflecting the relations between the
nodes. Both mono and multi-label classification can be handled by the model.
For the experiments, we focus on classification in social network data. This type
of data offers a variety of situations which allows us to illustrate the behavior and
the performance of the model for different types of heterogeneous classification
problems.

To summarize, our contributions are as follows: (i) We propose a new method
for learning to classify nodes adapted to heterogeneous graph data; (ii) We model
the uncertainty associated to the nodes representation; (iii) We provide a com-
parison with state of the art baselines on a series of social data classification
problems representative of different situations.

2 Related Work

2.1 Graph Node Classification

Several different models have been proposed to solve the graph node classification
task. We discuss below three main families [4] (i) Random Walk type methods,
(ii) collective classification, and (iii) semi-supervised/transductive graph regu-
larized model.

Random Walk Type Methods This family gathers methods where labels
are iteratively propagated from seed nodes to all the other nodes in a network.
Propagation follows a random walk or a similar iterative mechanism. [8, 28] are
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among the early Machine Learning (ML) models using random walks for clas-
sification in homogeneous graphs. [27] propose an extension of these models for
heterogeneous graphs. It relies on hand defined projections of the graph onto ho-
mogeneous graphs, the approach being difficult to adapt automatically to new
datasets. The Graffiti random surfer model [1] is a state of the art random walk
classifier for heterogeneous graphs. It is based on two intertwined random walks.
Both are between nodes of the same type, but allowing either one hop (standard)
or two hops (extended) steps in the graph. It models up to a certain extent the
influence among nodes of different types. In our preliminary tests on different
datasets, this model was among the best ones.

Collective Classification Collective classification algorithms are extensions of
classical inductive classification to relational data. They take as input a fixed size
vector composed of node features and of statistics on the node neighbors current
labels. Sen et al. [21] provide an introduction and a comparison of some of these
models. They distinguish between two families: local and global models. The
former make use of local classifiers. In [15, 16] for example, naive Bayes classifiers
are used iteratively, dynamically updating the attributes of nodes as inferences
are made about their neighbors. Along these lines, [19] recently introduced an
iterative model for sparsely labeled network which forces the label predictions to
map the distribution of the observed data with a maximum entropy constraint.
Global classifiers optimize a global loss function using graphical models, like e.g.
Markov Random Fields. Iterative methods suppose features associated to nodes
to learn the classifier, which is not the case in our work.

Semi-Supervised Transductive Learning The third family has been devel-
oped for exploiting the manifold assumption in semi-supervised learning. The
loss function is composed of two main terms, one is for classification on the la-
beled nodes, the other one is a propagation equation which encourages neighbor
nodes to share similar labels. Seminal works in this direction include [26, 2, 24,
20]. All these models have been developed for homogeneous graphs and perform
some form of label propagation as random walk formulations. The difference
with the latter is that the problem is formulated as a loss minimization one,
which is more general than simply formulating a propagation rule. Relations
between random walks and loss based models is discussed more at length in [29,
4]. Extensions have been proposed over the years to handle more general situa-
tions. Multi-relational graphs where nodes are all of the same type, but can be
linked by different relations are considered in [9,13]. This also allows them to
extend the transductive models to inductive formulations. Some authors have
attempted to extend homogeneous formulations to the heterogeneous setting.
All follow more or less the idea of projecting the heterogeneous graph onto a
series of homogeneous ones, thus creating a series of homogeneous classification
problems. Work in this direction includes [11] which is a direct extension of the
homogeneous formulation in [25]. Graph projections have to be defined for each
new problem and none of these models is able to directly exploit the correla-
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tion between nodes of different types. The work closer to ours is [10] who was
among the first to propose an embedding model for transductive heterogeneous
graph classification. This has been the starting point of our work, but they only
consider deterministic representations where we use a more general transductive
formulation with probabilistic embeddings.

To summarize among the approaches that consider heterogeneous graph clas-
sification, very few allow modeling the influences between nodes of different
types. In the experimental section, we will compare our model to [1] and [10]
which have been designed specifically for heterogeneous classification, as well as
an unsupervised graph embedding model [22] and an homogeneous graph model
[28].

2.2 Learning Representations for Graphs and Relational Data

In the last years, there has been a growing interest in learning latent representa-
tions. This has led to breakthroughs in domains like image recognition, speech
or natural language processing [3,14]. Graph embeddings have been proposed
for unsupervised learning where the goal is to learn a representation that pre-
serves the graph structure and that can be exploited latter for different purposes
like visualization, clustering or classification. For graphs, [18] learns graph rep-
resentations by performing truncated walks on the graph — and supposing that
nodes along the path should be close together in the representation space. [22]
propose an algorithm designed for very large graphs, that can be used for dif-
ferent types of graphs (undirected, directed, weighted or not) — we use their
method as our unsupervised baseline that embeds all data points and then train
a classifier on labeled ones. Somewhat related to this topic is the learning of
triplets in knowledge graphs where both relations and nodes representations are
learned for ranking positive triplets over negative ones [5-7]. The setting is how-
ever quite different from the one considered here. Finally, modeling uncertainty
via Gaussian embeddings has been proposed recently for unsupervised learning
in [23,7]. Based on sentences in the former and knowledge graph in the latter,
they propose energy-based models to learn Gaussian embeddings. In this paper,
we borrow their formalization and graph regularization cost in a transductive
setting.

3 Model

In this section we present our model, namely Heterogeneous Classification with
Gaussian Embeddings (HCGE).

3.1 Notations

We first introduce the notations used throughout this paper. An heterogeneous
network is modeled as a directed weighted graph G = (N, £, W) where N is the
set of nodes, £ the set of edges and W the weights associated to the edges. Each
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node x; € N of the graph has a type t; € T, where 7 = 1,2,...,T. We denote
N, the neighbors of x;.

Regarding the classification task, let V* denotes the set of categories asso-
ciated to nodes of type t, and #)? the cardinality of Y. £ C N is the set of
indices of labeled nodes. For ¢ € L, y; is the class vector associated to x;: node
x; belongs to category c if y{ = 1 and does not belong if y{ = —1.

In our model, each node x; is mapped onto a representation which is a Gaus-
sian distribution over the space z; ~ N (1, 2;) in R?. The latent space is com-
mon to all nodes. In this paper, we compare two different parameterizations of 3.
We experimented with a spherical (X; = 0;1d) and a diagonal (X; = diag (af)p)
covariance matrix. We use a weight w, for each type of relation and to simplify
we will denote w;; the weight for edge (4, j) linking node ¢ to node j with a given
relation.

3.2 Learning Gaussian Embeddings

Loss Function We learn the representations of nodes and classifiers parameters
by minimizing an objective loss function. It takes the general form of transductive
regularized loss [12,25], with a classification (A¢) and a regularization term
(Ag), both being detailed later:

L(z,0) =Y Ac(for(z:),u) + A Y D wijAc(zi,2) 1)

€L i€EN JEN;

As for classical transductive graph losses, the minimization in (1) aims at
finding a trade-off between the difference between observed and predicted labels
in V!, and the amount of information shared between two connected nodes.
There are however major differences, since here z is not a label as in classical
formulations, but a node embedding. Finally, the function fg:(.) is a parametric
classifier for a node of type t — there is one such classifier for each node type.
Since we are using Gaussian embeddings, the zs are random variables and the
regularization term is a dissimilarity measure between distributions.

To avoid overfitting, following [23], we regularize the mean and the covariance
matrix associated to each node. We add two constraints to prevent means and
covariances to be too large and to keep the covariance matrices positive definite
(this also prevents degenerate solutions):

||i]] < C and Vp, m < of < M (2)

where the different parameters C, m and M have been set manually after some
trials on a subset of the DBLP training set to respectively 10, 0.01 and 10 (and
not changed after that), but any other reasonable value will do.

The two following paragraphs refer to the respective parts of (1).

Classifier The mapping onto the latent space is learned so that the labels of
each type of node can be predicted from the (Gaussian) embedding. For that,
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we use a parametric classification function fp: depending on the type t of the
node. This function takes as input a node representation and outputs a vector
of scores for each label corresponding to the node type. The parameters ' of
the classifier are learned by minimizing the following loss on labeled data:

LClassification = Z AC(fG‘i (Zi)7 yi) (3)
€L
where Ac(fgt: (2:),y:) is the loss associated to predicting labels fyt; (2;) given
the observed labels y;. We recall that in this equation fy¢; (2;) and y; have values
in R#Y".

In our experiments, we used different losses for Ag. We first considered the
case where a class decision is simply the expectation of the classifier score to-
gether with a hinge loss, adapting the loss proposed in [10]. For a given node x
of type t with an embedding z, this gives:

#Y?
Ac(for(2),y) = Apv(for(2), ) &f Z max (0; 1 — y*E. [f§ (2)]) (4)
k=1

where ¥ is 1 if z belongs to category k and —1 otherwise, and féﬁ (2) is a random
variable for category k.

Alternatively, the density based formulation allows us to consider uncertainty
through a probabilistic criterion. We used here for A¢ the log-probability that
y¥ fo (2) will take a positive value. In this case, the variance will be influenced
by the two loss terms: if the two terms act in opposite directions, one solution
will be to increase variance. As we will see this is confirmed by the experiments.

#Y?
Ac(for(2),9) = Ape(for(2).9) = = > log P (y* £ (2) > 0) (5)

k=1

In our experiments and for both costs, we used a linear classifier for f(ft, which
allows to easily compute the different costs and gradients, since the random
variable fé“t (z), being a linear combination of Gaussian variables, is Gaussian
too. A basic derivation shows that:

-6

—— (6)
23, (6L07)?

1
P (y"f}.(2) > 0) = 3 1+ erf

where erf is the Gauss error function.

There are some notable differences between the two classification losses dur-
ing learning. In the case of a linear classifier fyr, E.[f}.(2)] = p - 0%. Thus,
minimizing Agy only updates the mean of the gaussian embedding: the covari-
ance matrix of the embedding does not interfere with the classification term,
and is only present in the second term of (1).
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For the Ap, loss, the probability is proportional to erf ( %) where
the variance is present. When the graph regularization and classification cost pull
the representation mean in opposite directions (opposite gradients), the model
will respond by increasing the variance for the spherical variance model!: this
behavior is interesting since it transforms an opposition between regularization
and classification costs into increased uncertainty.

Graph Embedding We make the hypothesis that two nodes connected in the
graph should have similar representations, whatever their type is. Intuitively,
this will force nodes of the same type which are close in the graph to be close in
the representation space. The strength of this attraction between nodes of the
same class will be proportional to their closeness in the graph and to the weight
of the path(s) linking them. We use the asymmetric loss proposed in [23, 7]:

Larapn =) > wiDrce(3]12) (7)
i JEN;
where Ag(z;, 2;) = Dir(24]|z;) is the Kullback-Leibler divergence between the
distributions of z; from z;:

Nm; P2
Dn(aillz) = [ Nwsng, ) log 2Z 0 25) 4,

TR N (5 pi, Xi)

= % <tr(2{12j) (i — )T (i — ) — d — log det(zj))
(8)

The loss Lgrqepn is a sum over the neighbors Nj; of i, where w;; is the weight
of the edge between x; and x;. Other similarity measures between distributions
could be used as well, the Kullback-Leibler divergence having the advantage
of being asymmetric, which fits well the social network datasets used in the
experiments.

Algorithm Learning the gaussian embeddings z ~ A (u, X) and the classifiers
parameters 6 consists in minimizing loss function in (1). We used here a Stochas-
tic Gradient Descent Method to learn the latent representations, i.e. the p;, X;
as well as the parameters 6 of the classifiers.

Our algorithm samples a pair of connected nodes and then makes a gradient
update of the nodes parameters. For each sampled node z; that is part of the
labeled training set £, the algorithm performs an update according to the first
term of (3). This update consists in successively modifying the parameters of
the classification functions % and of the latent representations u; and X; so as
to minimize the classification loss term. Then, the model updates its parameters

! the increase will be in the direction of the normal to the classifier hyperplane for the
diagonal variance model
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with respect to the smoothness term of (7). Note that, while we use a stochastic
gradient descent, other methods like mini-batch gradients or batch algorithms
could be used as well.

4 Experiments

4.1 Datasets

Type Nb. Nodes|Nb. Labeled Nodes|Nb. Labels
Nodes Paper 14,376 14,376 20
DBLP Author 14,475 4,057 4
Type Nb. Edges

Edges Author«sPaper 41,794

Nodes Photos 46,926 8,766 21

Flickr User 4,760 3,476 42
Edges User<+User 175,779
User<Photo 46,926

Users 1,013 321 59

Nodes Tracks 35,181 24,562 28

Albums 32,118 15,966 47

Artists 17,138 11,564 47
User<«»User 1,109
LastFM User<> Album 47,541
User<> Artist 47,812
Edges| User<>Track 47,807
Track<>Album 29,647
Track<>Artist 35,181
Album<>Artist 32,118

Table 1: Datasets

Experiments have been performed on three datasets respectively extracted
from DBLP, Flickr and LastFM. For all but the first dataset (DBLP), each node
can have multiple labels. The three datasets are described below and summarized
in Table 1.

The DBLP dataset is a bibliographic network composed of authors and
papers. Authors are labeled with their research domain (4 different domains)
while papers are labeled with the conference name they were published in (20
labels). Authors and papers are connected through an authorship relation. The
graph is thus composed of two types of nodes and is bipartite with only one
relation type. Classification is monolabel on papers and authors.

The Flickr corpus is a dataset composed of photos and users. The photo
labels correspond to different possible tags while the user labels correspond to
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their subscribed groups. The classification problem is multi-label: images and
users may belong to more than one category. Photos are related to users through
an authorship relation, while users are related to others through a following
relation. We have kept the image tags that appear in at least 500 images, and
user categories that appear also at least 500 times in the dataset resulting in 21
possible labels for photos and 42 for authors.

The LastFM dataset is a social network composed of users, tracks, albums
and artists. This dataset was extracted using the LastFM API%. The task is
multi-label and all node types have their specific set of labels. Users are labeled
with the type of music they like (59 labels), tracks with the kind of music they
belong to (28 labels), album with their type (47 labels) and artists with the kind
of music they play the most (47 labels). Users are related to users (friendship),
tracks (favorite tracks), albums (favorite albums) and artists (favorite artists).
Tracks are related to albums (belong to) and artists (singer). Finally, albums
are related to artists (sing in). Note that one track can be related to several
artists, and an album can be related to several artists. This dataset contains
tracks labeled by their genre (rock, indie, ...), users by the type of music they
like (female vocalists, ambient, ...), albums by their type (various artists, live,
...) and artists by the kind of music they make (folk, singer songwriter, ...). Some
labels may be the same string-wise for different types of nodes, but we consider
that labels of different type of nodes are distinct, e.g. pop is not the same for an
artist or a track.

We compare our approach with four state-of-the-art models (see Sect. 2):

— LINE [22], which is representative of unsupervised learning of graph em-
beddings suitable for various tasks such as classification. We performed a
logistic regression with the learned representations as inputs.

— HLP [28], which is representative of transductive graph algorithms devel-
oped for semi-supervised learning. As HLP is designed for homogeneous
graphs, we perform as many random walks as the number of node types,
considering each time that all the nodes are of a same given type.

— Graffiti [1], which is a state of the art model for the task of classification
with random walk in heterogeneous graph.

— LSHM [10], which is another state of the art model for the task of classifi-
cation with deterministic vector representations in heterogeneous graph.

Evaluation Measures and Protocol For the evaluation, we have considered
two different evaluation measures. The Precision at 1 (P@1) measures the
percentage of nodes for which the category with the highest score is among the
observed labels. The Precision at k (P@k) is the proportion of correct labels
in the set of k labels with the highest predicted scores. Here micro PQk is an
average on all the node types, with k set to the number of relevant categories.
This is a measure of the capacity of a model to correctly pick the k relevant
categories of any node. In the case of DBLP (mono-label dataset), we consider

2 To access the APT go to http://www.lastfm.fr/api
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that the predicted category is the category with the highest score. We make use
of the Precision at 1 (P@Q1) measure as there is at most one label per node.
We optimize and compare the different models with regard to micro-average, we
also report macro-average.

Regarding the experimental protocol, we partition a dataset into two dif-
ferent subsets, namely a training set and a testing set. As all the models have
hyperparameters, one subset of the training set is used as a validation set to
optimize by grid search the hyperparameters. The optimization is done with re-
spect to the Micro P@k measure, which corresponds to the mean of PQk over
all nodes. The other part of the training set is used to learn the parameters of the
different models. We then compare the different models based on the results on
the testing set, by using the model for which the performance over the validation
set was the best.

Experiments are performed with different training set sizes: 10%, 30%, 50%.
Within our transductive setting, the training set size refers to the proportion
of labeled nodes used in the training set®. The training nodes are selected at
random. The proportion of nodes used during the parameters training phase and
used for the hyperparameters selection depends of the size of the training set.
We use 50-50 for a training set size of 10% and 80-20 (train/validation) for the
others. Experiments are performed with 5 random splits. The hyper-parameters
are selected for each split using the validation set. We then average 5 runs over
each split.

4.2 Results

In this section we present the results of four variants of our gaussian embedding
model, and compare to LINE [22], Graffiti [1], HLP [28] and LSHM [10]. The
experiments are performed on the three datasets described in Table 1 and the
results are described in Tables 2 (DBLP), 3 (FlickR) and 4 (LastFM). The best
performing classifier (on the test set) is presented in bold.

Concerning the four variants of our model, HCGE(A,,X) refers to the HCGE
model with the classification loss Ay (Agy or Ap,) and a spherical (X=S) or
diagonal (X=D) covariance matrix.

For micro PQk, our model generally outperforms the others on all the datasets.
Supervised models (HLP, Graffiti, LSHM and HCGE) using the class informa-
tion outperform unsupervised representation learning, which matches the results
reported in [10]. On all datasets, the performances of HLP are below the per-
formances of Graffiti, LSHM and HCGE. This clearly shows that modeling the
heterogeneity of the graph brings noteworthy improvements. Comparing the het-
erogeneous models, both LSHM and HCGE outperform Graffiti on all datasets.
On average, comparing to Graffiti, LSHM is 2.4 better on DBLP, 2.1 better on
FlickR and 2.5 better on LastFM. We observed the same behavior for HCGE,
with +2.8 on DBLP, +4.4 on FlickR and +6.0 on LastFM. We can note that the

3 We did not prune the graph
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Train size Model Train‘Val Test
S ode Micro Micro[Macro“Author[Paper
LINE 25.1 (189 19.5 | 23.0 29.1 | 16.8
10% HLP 100 |24.7| 24.1 | 27.2 32.6 | 21.8
Graffiti 100 [32.4| 30.9 | 38.1 || 50.8 | 25.3

LSHM 99.8 |33.8| 32.1 | 40.0 || 53.9 |26.0
HCGE(Agv,S)| 99.7 [33.1] 30.9 | 385 || 52.1 | 24.9
HCGE(Agy,D)| 95.6 [31.4] 304 | 37.4 || 49.9 | 24.9
HCGE(Ap,.,S) | 83.8 [29.0| 27.9 | 34.3 | 45.6 | 22.9
HCGE(Ap,,D)| 92.9 [29.0| 28.3 | 34.3 || 45.1 | 236

LINE 24.0 |121.5| 21.9 | 24.8 || 30.1 | 19.5
30% HLP 100 [35.8| 36.0 | 41.9 | 524 | 31.4
Graffiti 100 [39.6| 38.5 | 46.6 || 61.1 | 32.1

LSHM 99.7 143.0| 41.2 | 52.9 || 73.8 | 31.9
HCGE(Agv,S)| 98.5 [44.4| 42.3 | 52.6 | 71.0 | 34.3
HCGE(Agv,D)| 98.8 [42.9| 41.2 | 50.8 | 68.0 | 33.6
HCGE(Ap,,S) | 97.5 |41.8| 41.3 | 52.1 71.4 | 32.8
HCGE(Ap,,D)| 97.4 |43.8| 42.3 | 54.1 || 75.0 | 33.1

LINE 24.2|121.1] 22.3 | 25.0 || 29.8 | 20.2
50% HLP 100 [39.7| 39.4 | 46.5 | 59.3 | 33.7
Graffiti 100 [41.5| 41.2 | 494 || 64.1 | 34.8

LSHM 99.9 [45.5| 44.4 | 56.8 || 79.2 | 345
HCGE(Agpv,S)| 99.3 |45.6| 44.6 | 55.2 || 74.1 | 36.3
HCGE(Agy,D)| 98.1 [44.7| 43.9 | 53.7 || 71.0 | 36.3
HCGE(Ap,,S) | 99.4 |45.8| 45.5 | 57.1 || 77.8 |36.4
HCGE(Ap,,D)| 97.6 |45.9] 45.7 | 57.7 || 79.2 | 36.2

Table 2: P@1 DBLP

more complex the dataset, the higher the gap compared to the baselines. This
also shows that the use of representations can clearly improve the performances.

On each dataset, our model outperforms LSHM (and the other competitors)
8 times over 9, with on average +1.0 points for DBLP, +2.3 for FlickR, and +3.8
for LastFM over the second ranked model. According to the results, introduc-
ing uncertainty in representations clearly improves results when comparing to
LSHM. Taking a closer look to the results, we can see that our models superi-
ority increases with the graph complexity. Let us also point out that, according
to our initial intuition, the effect of using uncertainty has more impact when
the amount of training data is lower: the difference between LSHM and HCGE
decreases in general when more training data is available (except for DBLP).

Let us compare the performance of the variants Agy and Ap,.. Globally,
Ap, seems to be disadvantaged by a low number of training examples, when
Agy seems to be more stable in comparison to other baselines. However, the
more training data, the closer the Ap, variant is to Agy . For example, on the
DBLP dataset, moving from 10% to 30% improves on average Ap, results by
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Train size Model Train‘Val Test
S ode Micro |Micro|Macrol||User|Photo
LINE 24.4119.4] 20.7 | 23.2 {|29.1] 17.3
10% HLP 100 [26.0| 26.3 | 27.8 ||31.3] 24.3
Graffiti 100 [24.3| 24.5 | 27.0 ||32.7] 21.2

LSHM 99.3 [29.6| 29.3 | 29.1 [|28.6| 29.5
HCGE(Apy,S)| 98.9 [33.5| 32.7 | 32.6 ||32.4| 32.8
HCGE(Agv,D)| 99.1 [33.4] 32.6 | 32.6 ||32.7] 325
HCGE(Ap,,S) | 96.0 [30.4| 29.7 | 29.2 {|28.1] 30.3
HCGE(Ap,,D)| 98.7 31.7| 31.9 | 32.2 ||33.0| 31.5

LINE 23.0 |21.6| 21.5 | 24.2 ||30.6| 17.9
30% HLP 100 [47.6| 47.7 | 43.7 ||34.5| 53.0
Graffiti 100 [47.5| 47.0 | 43.7 ||36.1| 51.3
LSHM 100 [49.2| 48.4 | 43.6 ||32.5| 54.7

HCGE(Agv,S)| 99.1 [51.5| 50.0 | 45.6 ||35.4| 55.8
HCGE(Agv,D)| 98.7 |51.6| 50.1 | 45.7 [|35.3| 56.0
HCGE(Ap,,S) | 98.3 |50.1| 49.0 | 44.4 ||33.8] 55.1
HCGE(Ap,,D)| 98.5 [50.6] 50.0 | 45.8 |[36.1| 55.5

LINE 23.2|121.8| 21.8 | 24.6 (|31.0| 18.2
50% HLP 100 |54.2| 54.1 | 48.6 (|35.8| 61.4
Graffiti 100 [54.4| 54.0 | 48.8 ||36.9| 60.8

LSHM 99.9 |55.1| 54.0 | 47.9 ||33.7| 62.0
HCGE(Agv,S)| 97.9 |56.7| 55.8 | 50.0 ||36.5|63.4
HCGE(Agv,D)| 97.3 [56.6| 55.8 | 50.0 ||36.5| 63.4
HCGE(Ap,,S) | 98.8 |55.7| 54.8 | 49.0 ||35.5| 62.5
HCGE(Ap,,D)| 98.4 |56.4| 55.9 | 50.3 |[37.2| 63.3

Table 3: P@k FlickR

+13.7 but only by +11.1 for Agy . For a training set size of 50%, the difference
between Ap, and Agy is +1.1 on DBLP, and 40.1 on FlickR. For LastFM, the
difference is resp. -14.6 for 10%, -6.5 for 30% and -1.5 for 50% of the dataset used
for training. On the three datasets, the lower the training set size, the better
Agy seems to be comparing to Ap,.. We could not explain this difference in the
behavior between Agy and Ap,, but believe that this is due to the fact that
the covariance matrix is only optimized in the graph regularization term in the
case of Agy.

Let us now compare the use of a spherical and a diagonal covariance matrix.
For the Agy variant, it looks like moving from a spherical covariance matrix
to a diagonal one brings no improvement. It even decreases the performance
on DBLP. Concerning the Ap, variant, for which the covariance matrix plays
a role in the classification cost, conclusions are reversed and using diagonal
covariance matrices improve the results. On the FlickR dataset, the use of a
diagonal variance improves the results by 1.4 on average. However, it looks like
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Train size Model Train‘Val Test
S Micro Micro[Macro“User[Track[Album[Artist
LINE 20.8 (20.6| 20.4 | 15.9 || 5.6 | 26.0 | 14.5 | 174
10% HLP 98.7 |138.1| 38.4 | 30.0 || 9.9 | 47.8 | 27.2 | 35.1

Graffiti 100 |40.1| 40.0 | 31.4 (|]10.6] 49.0 | 28.1 | 38.1
LSHM 99.9 136.4| 36.3 | 27.2 || 9.0 | 48.4 | 26.2 | 25.3
HCGE(Agv,S)| 99.8 |44.4| 44.0 | 34.1 || 9.6 |52.3| 35.0 | 39.7
HCGE(Agv,D)| 99.3 |44.0| 43.6 | 34.0 |[10.5| 52.2 | 34.4 | 38.7
HCGE(Ap,,S) | 97.6 |27.7| 27.8 | 20.7 || 4.1 | 34.9 | 21.0 | 23.0
HCGE(Ap,,D)| 96.0 |30.3] 29.4 | 21.9 || 6.7 | 38.7 | 22.1 | 20.2

LINE 20.5 {20.9| 20.5 | 17.0 ||10.1| 25.9 | 14.4 | 17.5
30% HLP 98.9 [50.2| 49.7 | 40.0 ||17.2| 60.5 | 37.7 | 44.8

Graffiti 100 [50.8| 50.3 | 40.4 ||17.2| 61.7 | 36.2 | 46.5

LSHM 99.8 154.2| 53.3 | 40.3 || 9.7 | 65.8 | 42.7 | 42.9
HCGE(Agv,S)| 99.6 |58.2] 57.3 | 45.0 (|14.8|68.2| 45.9 | 51.2
HCGE(Agv,D)| 99.5 |57.9| 57.0 | 45.3 ||16.8| 67.5 | 45.7 | 51.3
HCGE(Ap,,S) | 97.5 |50.5| 50.4 | 37.7 || 9.9 | 66.4 | 32.6 | 42.0
HCGE(Ap,,D)|96.9 |51.5| 50.8 | 38.5 ||13.2] 65.0 | 41.4 | 34.4

LINE 20.5 |20.5| 20.5 | 17.0 (|10.3| 26.0 | 14.4 | 17.5
50% HLP 98.8 |51.9| 52.1 | 42.3 ||19.4] 63.1 | 40.2 | 46.4
Graffiti 100 [53.2| 53.5 | 43.2 ||19.1| 65.4 | 39.5 | 48.7

LSHM 99.7 [56.6| 56.7 | 43.2 ||11.0| 68.8 | 45.6 | 47.6
HCGE(Agv,S) | 99.4 |60.3| 60.4 | 48.7 |(20.4| 71.2 | 48.8 | 54.4
HCGE(Agv,D)| 99.9 [60.1| 60.3 | 48.6 [|20.1| 71.1 | 48.7 | 54.3
HCGE(Ap,,S) | 99.2 |58.6| 58.5 | 45.0 ||11.8|69.8 | 47.4 | 51.0
HCGE(Ap,,D)|99.9 |58.9| 58.9 | 47.2 ||18.9| 70.2 | 46.4 | 53.4

Table 4: PQk LastFM

the more training data, the less the improvement, with +2.2 improvement for a
training set size of 10%, +1.0 for 30% and +1.1 for 50%.

4.3 Qualitative Discussion

In this section, we focus on studying qualitatively the representations found by
HCGE. We consider the most robust variant of our model (Agy,S), and the
most challenging dataset, LastFM (similar observations were made on the other
datasets). We will examine the respective role of regularization and classification
costs on labeled training nodes, and the relationship between the learned variance
of a node and the local node properties (like its number of neighbors).

We first examined the respective role of classification and regularization costs.
In (1), the max-margin classification cost implies that the gradient of a node x is
0if y*E.[f# (2)] is above 1. In this case, the only constraints on the node are due
to the graph regularization cost. We can see how many of the nodes are useful for
classification by looking at the number of cases for which y*E,[fX (z)] is below
or equal to 1. In Figure (1a), we have shown an histogram of y*E,[f}. ()] for
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labeled nodes in the training set (after convergence). For around one-third of
the nodes, the value of the classifier is above 1.1 — they could be removed from
the labeled set without harming the solution. This is clearly in agreement with
the experiments where we have shown that representation-based models were
performing better than the others, and suggests that it would be interesting to
use these statistics to predict the performance of the model on held-out data.

45000 12
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20000 4
15000

10000

5000

0 -2
-0.5 0.0 0.5 10 15 2.0 25 3.0 -14 -13 =12 =11 -10 -9 -8 -7

(a) Histogram of y"E. [f:(2)]. (b) Plot of o against the log PageRank.

Fig. 1: Qualitative results for the model HCGE(Agy,S) on the LastFM dataset
with 50% of the dataset used for train. In Fig. (1b), we computed gaussian kernel
density to show high density regions in the plot.

Regarding the relationship between the learned variance and the local prop-
erties of each node, we looked at the relationship between the PageRank?* [17] of
a node and its variance. Figure (1b) shows that high PageRank implies a small
variance. Which means that for central nodes, representations are less uncertain.
However, the reverse implication is not true.

5 Conclusion

We have explored the use of uncertainty for learning to represent nodes in the
challenging task of heterogeneous graph node classification. The proposed model,
Heterogeneous Classification with Gaussian Embeddings (HCGE), learns for
each node a Gaussian distribution over the representation space, parameterized
by its mean and covariance matrix, by optimizing a loss function that includes a
classification loss and graph regularization loss. We have examined four variants
of this model, by using either spherical and diagonal covariance matrices, and
by using two different loss functions for classification. Our model can easily be

4 Using a standard damping factor of 0.15
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extended to inductive learning by defining the gaussian representation z as a
parameterized function of the input features.

Based on the experimental results obtained on datasets representative of
different situations, our main findings are that (i) integrating uncertainty in rep-
resentations improved classification (ii) according to our initial intuition, the
effect of using uncertainty has generally more impact when the amount of train-
ing data is lower and (iii) according to our expectation, highly central nodes
seem to have less variance associated to their representation.

Future work will address more in detail the relationship between the variance
and node properties, as well as understanding the interplay between regulariza-
tion and classification loss when both include the variance in their formulation.
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