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Abstract

Training regimes based on Maximum Likelihood Estimation (MLE) suffer from
known limitations, often leading to poorly generated text sequences. At the root of
these limitations is the mismatch between training and inference, i.e. the so-called
exposure bias, exacerbated by considering only the reference texts as correct, while
in practice several alternative formulations could be as good. Generative Adversar-
ial Networks (GANs) can mitigate those limitations but the discrete nature of text
has hindered their application to language generation: the approaches proposed so
far, based on Reinforcement Learning, have been shown to underperform MLE.
Departing from previous works, we analyze the exploration step in GANs applied
to text generation, and show how classical sampling results in unstable training.
We propose to consider alternative exploration strategies in a GAN framework
that we name ColdGANs, where we force the sampling to be close to the distri-
bution modes to get smoother learning dynamics. For the first time, to the best
of our knowledge, the proposed language GANs compare favorably to MLE, and
obtain improvements over the state-of-the-art on three generative tasks, namely
unconditional text generation, question generation, and abstractive summarization.

1 Introduction

Deep learning approaches have paved the way for significant achievements in Natural Language
Generation (NLG). Under the most popular paradigm, sequence to sequence models [40] are trained
with Maximum Likelihood Estimation (MLE) via Teacher Forcing [50]. Training neural networks
under MLE does not succeed in modeling sequence probabilities [48], since, at inference, the model
is conditioned on sequences that may have never been observed at training time. Indeed, generated
texts using this approach are often degenerate [16], e.g. prone to repetition.

Nonetheless, these same architectures, when used as discriminators, are able to distinguish human
from machine-generated text with a disconcerting efficiency: reported values are around 97% for
long article generation [53] or abstractive summarization [37]. In the generative architectures, the
encoder part can reach such performances, supporting the hypothesis that generation failures are
mostly due to the decoding step: under MLE training regimes, the decoding suffers from exposure
bias [33, 1] and lacks a sequence-level loss to optimize [26].

To mitigate MLE limitations, Reinforcement Learning (RL) has been applied to text generation
tasks [33, 29], considering sequence level metrics such as BLEU or ROUGE as the reward. However,
such metrics, based on n-grams similarity, are known to poorly correlate with human judgments [27],
and do not preserve meaning [39]. Hence, when reinforced on them, models yield to poorer genera-
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tions and higher degradation compared to their MLE counterparts [29]. To overcome these drawbacks,
better rewards are thus necessary [29].

To this end, Ziegler et al. [60] proposed to directly reward systems using human judgment. Although
this approach performs very well and approximates the best possible reward, it is obviously not a
viable solution in practice. However, it attests that, with perfect rewards, one can achieve excellent
levels of performance. A natural alternative, not requiring human judgments, is to frame the problem
under the Generative Adversarial Network (GAN) paradigm [13], which has been used successfully
for image generation [2]. For text, modeled as a sequence of discrete symbols, a naive computation
of the gradients is however intractable. Hence, Language GANs are based on gradient estimation via
RL-based techniques [52].

However, the reward in this case can be extremely sparse (as discussed in Section 3.2), yielding to
high-variance gradient estimation, which is known to be challenging for optimization [56]. Most
previous works have focused on this aspect, and proposed denser rewards [19, 22]. Unfortunately,
these attempts to apply GANs to text generation obtained limited success [4] and have been found to
underperform MLE [38, 42, 22].

Although known to be crucial [41], exploration is surprisingly understudied when RL is applied to
text generation. In this work, we propose a new exploration method that aims at sampling more
structured rewards and that better suits the GANs’ training dynamics, allowing for the first time to
successfully train Language GANs. Our main contributions can be summarized as:

1. We study the discriminators’ behavior and show that their degree of specialization has important
implications on the exploration to stabilize the training process. In particular, we find that reducing
the exploration space is essential to successfully train discrete GANs.

2. Based on these observations, we propose ColdGANs, a GAN architecture using alternative
sampling strategies that force the sampling to remain closer to the distribution modes.

3. Finally, we apply our proposed methods on three tasks. We report positive results compared to
previous works, including GANs and MLE-based models.

2 Related Work

RL for text generation Since many metrics of interest in NLP are non-differentiable, several
approaches used RL for text generation [7, 33, 29, 5]. To our knowledge, all works based on RL for
text generation use standard sampling for policy gradient estimation, following the current policy
from the generator they define. Apart from text GANs, they all suffer from the aforementioned
limitations of ill-defined reward metrics, such as BLEU or ROUGE [29].

Text GANs Tackling this problem by implicitly learning the metric via a discriminator, adversarial
approaches have been proposed for text generation. Given the very high dimension of the generative
(action) space, and the sparsity of associated rewards provided by the discriminator (see Section 3.2), a
large body of works focused on defining denser rewards: ranking and comparative discriminators [19,
58], sequential discriminators where the rewards are provided at each time step of the generation [38,
22], or using masked language modeling [10]. The policy is usually learned via vanilla Policy
Gradient REINFORCE [49], with the exception of MaliGAN [6], which deals with the problem of the
discriminator being a moving target trough Importance Sampling (IS). Another difficulty with GANs
for discrete sequential data is that discriminators are inaccurate for samples close to the generator
distribution modes, as those used for training are usually too scattered over the full space to enable
specialization on useful/difficult areas (see Section 3.2 for preliminary experiments on this).

Cautious RL Standard works in RL proposed ways to avoid catastrophic moves of the policy
parameters [35, 36], by enforcing the new policy to stay close to the current one at each step via
KL-divergence constraints. In this work, our main focus is rather to stay close to the comfort zone of
the reward function, which becomes easily noisy outside, independently of the policy.

Importance Sampling for Reinforcement Learning In RL, IS is generally used for sample ef-
ficiency purposes: in off-policy policy gradient methods, IS allows to re-use previously sampled
sequences more than once [47, 43, 11]. Conversely, in this work, IS is employed to improve the
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stability of RL for Text GANs. Closer to our work, MaliGAN [6] proposes to rely on IS to consider an
estimation of the data distribution as a target (via a KL objective). Although theoretically appealing,
its stability relies on very strong assumptions about discriminator guarantees, which rarely hold in
practice. Instead, we propose to rely on IS to stabilize the generator-discriminator min-max game via
alternative careful sampling strategies. Note also that our approach could easily be included in the
MaliGAN framework.

3 Discriminators and Generators Interaction

3.1 Generating and discriminating as text to text tasks

Generator Text generation naturally lends itself to autoregressive modeling [40]. The probability
to generate a sequence Y composed of N tokens y1, ..., yN is given by:

pθ(Y |X) =

N∏
t=1

p(yt|y1, ..., yt−1, X, θ) (1)

where θ are the learnable parameters of the generator and X the input sequence.

Neural networks typically produce class probabilities by using a “softmax” output layer that converts
the logit zi, computed for each token of the vocabulary, into a probability qi:

qi =
exp (zi/T )∑
j exp (zj/T )

(2)

where T is a “temperature” hyper-parameter, set to 1 unless otherwise specified. The higher the
temperature, the more uniform the probability distribution over the vocabulary, resulting in more
diversity but also more mistakes [15]. In the following, we note as πθ the distribution defined by the
generator with temperature T = 1.

Discriminator In the following, we consider a discriminator Dφ learned from sets of human and
generated texts for each input X as a logistic regression problem:

1

|H|
∑

(X,Y )∈H

log(Dφ(X,Y )) +
1

|G|
∑

(X,Y )∈G

log(1−Dφ(X,Y ))

where H is a set of pairs of input X associated with a human written text Y from the data distribution,
and G is a set of pairs with generated outputs Y .

Text to text tasks Casting any NLP task as a text-to-text problem, T5 [31] demonstrated state-of-
the-art results on the established GLUE benchmark [46] and on its more challenging successor [45].
Accordingly, we employ the same architecture for both discrimination and generation. This allows
for fairer comparisons thereafter, as both generator and discriminator have the same architecture,
pre-training and capacity.

3.2 Discriminator-Generator Equilibrium

Exposure Bias As mentioned above, a discriminator can easily predict the human or machine
nature of a text. One reason for this lies in exposure bias. To quantify this statement, we compare
the results for a discriminator when trained under the two following generation strategies: Standard
Generation, suffering from the exposure bias; and, Teacher Forcing Generation, where the ground-
truth tokens yi<t are fed to the generator, so not to expose the model to its own prediction, and only
yt is generated by a machine.

We show the results in Fig. 1. As expected, the two discriminators have the same score for t = 0. We
observe that both perform well, and that the Standard Generation discriminator obtains consistently
larger improvements, w.r.t. the Teacher Forcing Generation discriminator, as the length of the
sequence increases. This could indicate the presence of the exposure bias, for which the errors
accumulate over time. Still, the relatively high accuracy observed under Teacher Forcing Generation
suggests that additional factors, beyond exposure bias, might be involved: in the following, we show
that the extreme specialization of discriminators is among those.
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Figure 1: Accuracy of a discriminator model trained under two different generation modes: Standard
(subject to the exposure bias) and Teacher Forcing. The x-axis corresponds to the partial length t of
the sequence to discriminate.

Table 1: Probability that a text is human according to various discriminators. Dperfect corresponds
to a theoretical perfect discriminator with infinite capacity and training data. DT=γ corresponds to a
discriminator trained on samples generated with a temperature T = γ. Past T = 0 and past T = 1
correspond to results on samples obtained with the generator weights resumed from a previous stage
of the training, i.e. a checkpoint one epoch before the final state (see Section 4, Memory Replay).

Evaluated on
human T = 0 T = 1 T =∞ past T = 0 past T = 1

DT=0 .79 .17 .84 .92 .26 .85
DT=1 .79 .76 .23 .09 .75 .31
DT=∞ .92 .92 .91 .08 .92 .91
DT∈{0,1,∞} .69 .24 .24 .09 .32 .36

Dperfect 1 0 0 0 0 0

Discriminator’s No Free Lunch As defined above, the temperature T of the generator is a hyper-
parameter which allows to control the randomness of predictions while sampling, by scaling the
logits before applying a softmax. Thus, we can define various sampling strategies from the same
generator. Low (close to 0) temperatures provide samples close to the sequence sgreedyθ of a greedy
procedure that takes the token with max generator probability πθ at each step (the output of a beam
search with beam size B = 1). With high temperatures, the distribution of sequences tends to the
uniform distribution. We experiment with different temperature settings for the same generator
(trained with MLE), and use the obtained samples to train and test a discriminator. This allows us to
evaluate the impact of differences in sampling temperatures, between training and inference, on the
discriminator performance. In other words, how a discriminator, trained with samples obtained at a
specific temperature, performs when faced with samples generated under different sampling setups.

We train and evaluate discriminators on samples generated under temperatures T = 0, 1 or∞, for
a conditional generation task (summarization, see Section 5.2), which allows to consider various
sequence samples even at low temperatures. We report the results in Table 1. As expected, in
all but one case, discriminators perform better if trained and evaluated with sequences generated
under the same temperature (no mismatch). However, when the training and evaluation samples
are generated with different temperatures, we observe that the discriminator fails to distinguish
human from generated ones. More precisely, it considers most sentences to be human-generated
(around 90%). Conversely, when trained on the different temperatures together (T ∈ {0, 1,∞}),
results are more balanced: robust across the various temperatures, but yielding a drop in accuracy,
consistently with the well-known accuracy-robustness trade-off [12, 3]. This highlights that individual
discriminators are specialized on specific generation pairs (machine/human). Knowing this, it is
crucial to orient this specialization on useful areas.

Interestingly, when trained from samples issued from πθ, the discriminator DT=1 is inaccurate at
identifying samples close to sgreedyθ as generated ones: DT=1(s) equals 0.76 on average over these
samples. This is particularly bad for a discriminator used as a reward signal of a RL process, since
such samples lie in the useful area of the output distribution. They correspond to samples close
to the modes of the distribution πθ. Moreover, in many text generation applications, generation
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strategies such as beam search target these sequences as prediction outputs. A bad reward function at
these locations is likely to lead to bad generation performance. Besides, the discriminator trained on
samples close to the mode of πθ (i.e., DT=0) is bad for samples from πθ (i.e., T = 1), indicating that
one cannot simply use such samples to train the discriminator while considering standard sampling
for generator training (as rewards would be very inaccurate).

Implications for Discrete GANs Holtzman et al. [16] report that for T = 1, sampling from the
tail of the distribution is expected to happen within the first three steps of decoding and with a
probability superior to 99.96% within 20 steps. Such unstructured exploration causes a large variance
which grows with the number of time steps, and perturbs actions too frequently [34, 17]. A less
random exploration would thus yield to better structured sequences and lower variance, closer to the
distribution learned by the discriminator, and would likely enable better training dynamics between
the discriminator and the generator.

4 Models

Based on the findings above, we seek sampling strategies that allow both the discriminator to train on
useful samples, and the generator to be trained from reliable rewards from the discriminator, within a
policy gradient RL scheme where we are interested at maximizing J(θ) = Eτ∼πθ [Dφ(τ)], according
to generator parameters θ. The discriminator is updated at the end of each training epoch, via gradient
ascent on human-machine pairs, with new artificial sequences resulting from the generator distribution.
In order to introduce cautious sampling that focuses more on modes of distributions, note that it would
be useless to consider the policy gradient∇θEτ∼πT=γ

θ
[Dφ(τ)] = Eτ∼πT=γ

θ
[Dφ(τ)∇θ log πT=γ

θ (τ)]

of a generator distribution with modified temperature T = γ, as it would, compared to T = 1, only
imply rescaling the network outputs without altering the learning process.

Instead, we propose to employ Importance Sampling for defining our cautious sampling strategies
for text GANs, based on the fact that, for any distribution P,Q : X → [0, 1] such that Q(x) > 0

whenever P (x) > 0, and any function f : X → R, we have Ex∼P (x)[f(x)] = Ex∼Q(x)[
P (x)
Q(x)f(x)].

In our case, this yields the following unbiased policy gradient:

∇θJ(θ) = Eτ∼π̂θ

πθ(τ)
π̂θ(τ)

Dφ(τ)

|τ |−1∑
t=1

∇θ log πθ (τt|τ1:t−1)

 (3)

where τt ∈ V is the t-th token from sequence τ and τ1:t−1 the subsequence of its t− 1 first tokens,
πθ the generator probability and π̂θ a modified sampling distribution, which enables the generation
of any possible sequence of tokens given the vocabulary V .

In this work, we focus on the exploration stage; therefore, conversely to previous works, we can
choose the most sober form of reward: 1 if Dφ(τ) predicted human, and 0 otherwise. We show that
a sparse reward is not a limitation if the sampling strategy is close to the modes of the distribution
– provided the initial solution is a good enough bootstrap (which, according to our experiments, is
the case). Note that Dφ is trained with samples from π̂θ to avoid any mismatch with the generator
training samples, which would be problematic otherwise (as pointed out in Section 3.2).

ColdGANs exploration The temperature T plays a major role in moderating exploration. Indeed,
being a scaling factor applied to the generator outputs, it directly defines the degree of diversity of
the generated sequences. The default exploration is obtained by recursively sampling a sequence
of tokens from the model distribution with T = 1. The higher T , the more random the sampled
sequences, regardless of the model’s policy. Conversely, lower temperatures reduce the exploration,
with T → 0 ultimately equivalent to the argmax function. Therefore, we consider a distribution
π̂θ = πTθ with lower (colder) temperatures T ∈]0, 1[. This allows to explore sequences composed of
tokens less likely to be sampled from π̂θ tail. Note that for T > 0, π̂θ > 0 whenever πθ > 0.

ColdGANsnucleus In addition, we consider a more sophisticated technique: nucleus sampling [16].
This decoding method has been shown to produce higher quality texts than previous sampling
strategies, including those temperature-based. Sampling from the nucleus of tokens containing the
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vast majority of the probability mass, the approach dynamically truncates the unreliable tail of the
probability distribution and hence is an instance of a cautious generative process. However, with
nucleus sampling, many sequences τ get π̂θ(τ) = 0 while πθ(τ) > 0, invalidating the IS. To avoid
this, we propose to use a mixture combining low temperatures and nucleus policies:

π̂θ(τ) = επnucleusθ (τ) + (1− ε)πT=γ
θ (τ) (4)

where ε is a hyper-parameter, πnucleusθ is the probability under nucleus and πT=γ
θ the probability

rescaled for temperature γ, as described in the previous paragraph.

Importance Weight Clipping The importance weights can become large, causing instability.
Adapting from [47] (see paragraph 3.2 of their paper for more details), we truncate the importance
weights and add a correction term in the computation of∇θJ(θ):

Eτ ∼π̂θ [min(c, w(τ))Dφ(τ)∇ log πθ(τ)] + Eτ ∼πθ
[
max

(
0,
w(τ)− c
w(τ)

)
Dφ(τ)∇ log πθ(τ)

]
where w(τ) = πθ(τ)

π̂θ(τ)
. In the first term of Eq. 4, by clipping the importance weight, the variance of the

gradient estimate is bounded. The second term of the equation ensures that our estimate is unbiased,
by re-sampling another sequence from the true policy πθ. In our experiments, we set c = 5. Note that,
contrary to off-policy RL, for which such a IS clipping was proposed [47], in our case clipping is very
rare: it only occurs for sequences whose probability from the generator is much higher than the one
from the sampling distribution, which is designed for sampling close to the mode of πθ. However, if
this happens, this clipping ensures that the corresponding gradient does not explode.

Memory Replay In Table 1, we observed that the performance of the discriminators is lower when
evaluated on samples generated from the previous checkpoint of the same model (i.e., evaluated
on past T ). We connect this to the failure mode in GANs observed by Metz et al. [24], where the
generator and the discriminator oscillate during training, rather than converging to a fixed point. In
lifelong learning literature [23], it has been shown that 1% of experience replay is sufficient to avoid
catastrophic forgetting. Inspired by this work, we construct a memory buffer which contains samples
generated in the last K training steps, and replace 1% of the discriminator training examples with
samples from the buffer. This allows the discriminator to remain accurate on the samples from the
previous state of the generator, hence preventing such failure loop during training.

5 Experiments

Due to the computational cost of T5-large (11B parameters), we used T5-small (60M parameters).
For all our experiments, we used the validation sets for hyperparameter selection. In more detail,
we evaluated our approach with several learning rates,1 reporting results for a value of 2e-5. From
the best performing ColdGAN configuration, we perform ablations to assess the impact of Memory
Replay and Importance Weight Clipping. Finally, we experimented with BART [18] instead of T5.2

5.1 Unconditional Language Generation

Most previous works for language GANs have been evaluated on unconditional language generation
benchmarks. In this task, no input is provided and the goal is to generate both meaningful and diverse
texts. Consistently with [22], we measure these two aspects using, respectively, BLEU [28] and self-
BLEU [59] metrics.3 the To obtain a finer comparison between models, Caccia et al. [4] proposed to
draw the curve of (negative) BLEU vs self-BLEU, by sampling with various temperatures at inference.
This allows to measure the trade-off between quality and diversity. Following [6, 20, 38, 14, 4, 22],
we used the EMNLP2017 news dataset.4 We report ColdGANs results in Figure 2 (left). Notice that
previous works did not use self-supervised pretrained models, while we did (with T5): this explains

12e-6, 8e-6, 2e-5, 8e-5, 2e-4.
2BART has comparable performance to T5-large, but with 20x fewer parameters.
3Implemented in https://github.com/deepmind/deepmind-research/tree/master/scratchgan
4http://www.statmt.org/wmt17/
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Figure 3: Relative BLEU-4 gains obtained
with ColdGANs over MLE, grouped by
ground truth sequence length, on QG.

the improvement of our MLE baseline over theirs (MLE ScratchGAN). As one cannot directly
compare our performances with those reported from previous works, we study the performance
variations from the corresponding MLE baseline. Consistently with previous works [38, 42, 22], we
observe that the model, under the default exploration (i.e. GANT=1), performs strictly worse than
MLE. As a baseline, we experimented ColdGANT∼]0,1[, where during the training the temperature
is randomly sampled between 0 and 1 for each sequence. While it performs better than GANT=1, it
still does not compare favorably w.r.t. MLE. We report the results for a T5 model trained with the
ScratchGAN protocol, and found it did not compare favorably w.r.t. T5 (MLE). Conversely, both
ColdGANT=0.3 and ColdGANnucleus obtain better results than MLE for the entire curve. To our
knowledge, this is the first time that MLE falls short [4, 22] w.r.t. GAN-based approaches for this
task.

5.2 Conditional Language Generation

We evaluate ColdGANs on two popular tasks where text inputs are given for conditioning the
generation, namely Question Generation and Text Summarization. These are highly competitive
benchmarks, with recent state-of-the-art results achieved by MLE based on pre-trained transform-
ers [44]. Answer-aware Question Generation (QG) [57] is the task wherein, given a text and a target
answer, the goal is to generate a relevant question. Following previous works [8, 9], we used the
SQuAD dataset [32]. Automatic Summarization aims to produce concise and fluent summaries given
a longer text. We used the popular CNN/DM dataset [25], a corpus containing news articles and the
corresponding abstractive summaries. For conditional text generation tasks, output sequences are
commonly evaluated using BLEU (for e.g. Machine Translation, Question Generation) or ROUGE
(for e.g. Summarization) metrics. In contrast to the unconditioned scenario, the diversity is linked to
the variety of the inputs, and it is common practice to decode through beam search at inference.

Results For both tasks, we used data and evaluation metrics released by Dong et al. [8].5 The
results shown in Table 2 are consistent across the two tasks: again, we observe that exploring under
the default temperature yields to poor performances, while ColdGANs compare favorably to MLE.
The best performance is achieved with the experiment emphasizing the ColdGANnucleus exploration
the most, with ε = .9 and T = .2. Over 10 independent training runs, we also observed very stable
results for this model, with a standard deviation of the average BLEU-4 lower than .09 on the test
set. Finally, we applied this last ColdGANs setup to BART [18], achieving a new state-of-the-art on
both QG with 23.05 BLEU-4 and summarization with 41.12 ROUGE-L.

Mitigating the Exposure Bias In Figure 3 we report the relative gain obtained, in terms of BLEU-4
for T5-small, for the best configuration (i.e. ColdGANnucleus, ε = 0.9) w.r.t. the corresponding
MLE baseline. The x-axis gives the length of considered ground truth target sequences. We observe
that the longer the target sequence, the more the ColdGAN outperforms MLE. This might indicate
that ColdGANs can successfully mitigate exposure bias.

5https://github.com/microsoft/unilm/tree/master/unilm-v1
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Table 2: Results on Question Generation (QG) and Abstractive Summarization (Summ.) tasks.

QG (SQuAD) Summ. (CNN/DM)

#params BLEU-1 BLEU-4 ROUGE-1 ROUGE-L BLEU-4

SemQG [55] 18.37
BertSumAbs [21] 340M 41.72 38.76
UniLM [8] 340M 22.78 43.33 40.41
PEGASUS [54] 568M 44.17 41.11
T5-large (MLE) [31] 11B 43.52 40.69
T5-small (MLE) [31] 60M 47.72 19.65 42.34 40.37 15.94

" (GAN T=1) 60M 46.44 18.84 38.98 36.42 13.23
" (ColdGAN T=.2) 60M 47.94 20.23 42.58 40.74 16.04
" (ColdGANnucleus T=1;ε=.1) 60M 46.82 18.97 39.05 38.01 14.04
" (ColdGANnucleus T=1;ε=.9) 60M 47.83 20.85 42.31 40.44 16.21
" (ColdGANnucleus T=.2;ε=.9) 60M 48.50 20.55 42.54 40.61 16.86

w/o Memory Replay 60M 48.93 20.52 42.34 40.44 16.72
w/o IS Weight Clipping 60M 48.21 20.14 42.23 40.35 16.72

BART (MLE) [18] 400M 53.13 22.68 44.16 40.90 17,87
" (ColdGANnucleus T=.2;ε=.9) 400M 53.73 23.05 44.46 41.12 18.17
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Figure 4: Probability that the generated text is
human according to Dφ on CNN/DM.

Table 3: Human evaluation on QG.
ColdGAN corresponds to BART trained
with ColdGANnucleus T = .2; ε = .9. Two-
tailed t-test results are reported for each
model compared to Human (*: p < .01, **:
p < .001).

Fluency Relevance Answerability

Human 3.66 4.31 4.22
BART (MLE) 3.80* 4.43 4.11
ColdGAN 4.36** 4.45 4.01

Human Evaluation As discussed in Section 1, automatic metrics are known to suffer from key
limitations. Therefore, we additionally conducted a human evaluation on the QG task. Three
professional English speakers were asked to judge, on a 1-to-5 Likert scale, to what extent the
generated questions were: well-posed and natural (Fluency), relevant to their context (Relevance),
and answerable, by looking at their context and answer (Answerability). The results in Table 3 show,
surprisingly, both MLE-BART and ColdGAN -BART outperform the ground truth for Fluency. A
similar result was reported by Yoon et al. [51] (refer to Table 2 in their paper). A plausible explanation
is that humans are more inclined to use informal language and make grammar mistakes. For instance
the human question ”About how many yellow cabs operate in New York?” sounds slightly less formal
than the one, generated by ColdGAN , ”How many yellow taxicabs are in Manhattan ?”. Compared
to MLE, ColdGAN enables to significantly improve in term of fluency, while remaining competitive
on other metrics, consistently with our experiments on exposure bias.

Adversarial training curves Figure 4 shows the evolution (during training and for different setups)
of the probability of the generated text to be human, according to the discriminator. Consistently
with Table 2, ColdGANnucleus appears to be the most adverse to the discriminator. Conversely, the
regular GAN (T = 1) is less and less adversarial, and comparatively more perturbed.

6 Conclusion

We proposedColdGANs, a novel approach able to tame the exploration in Language GANs, allowing
to obtain performance improvements on both conditional and unconditional text generation, w.r.t to
MLE-based training. Our proposed IS method makes it compatible with advanced sampling methods,
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such as nucleus, or other future decoding methods. In the future, we plan to combine ColdGANs
with orthogonal approaches proposed by previous works, such as denser rewards.

Broader Impact

Fluent and reliable Natural Language Generation can have significant societal impacts. On the one
hand, we envision several applications beneficial for business, research or education: from automatic
summarization of news, papers or books, to efficient information access; from automatic and person-
alized student evaluation tests trough question generation, to responsive conversational interfaces. On
the other hand, malicious actors can use the same technology to build tools detrimental to society,
e.g. for creation and propagation of misleading (fake) news as discussed in [30], impersonation, and
deceit. Nonetheless, keeping this research open and under public scrutiny is arguably one of the best
ways to defend against such actors [53].
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[27] Jekaterina Novikova, Ondřej Dušek, Amanda Cercas Curry, and Verena Rieser. 2017. Why
we need new evaluation metrics for NLG. In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing, pages 2241–2252, Copenhagen, Denmark.
Association for Computational Linguistics.

[28] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method
for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting
on association for computational linguistics, pages 311–318. Association for Computational
Linguistics.

[29] Romain Paulus, Caiming Xiong, and Richard Socher. 2017. A deep reinforced model for
abstractive summarization. arXiv preprint arXiv:1705.04304.

[30] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019.
Language models are unsupervised multitask learners. OpenAI Blog, 1(8):9.

[31] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the limits of transfer learning with a
unified text-to-text transformer. arXiv preprint arXiv:1910.10683.

[32] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad: 100,000+
questions for machine comprehension of text. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pages 2383–2392.

[33] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. 2015. Sequence
level training with recurrent neural networks. arXiv preprint arXiv:1511.06732.

[34] Thomas Rückstieß, Martin Felder, and Jürgen Schmidhuber. 2008. State-dependent explo-
ration for policy gradient methods. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 234–249. Springer.

[35] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. 2015. Trust
region policy optimization. In International conference on machine learning, pages 1889–1897.

[36] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

[37] Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, Benjamin Piwowarski, and Jacopo
Staiano. 2020. Discriminative adversarial search for abstractive summarization. arXiv preprint
arXiv:2002.10375.

[38] Stanislau Semeniuta, Aliaksei Severyn, and Sylvain Gelly. 2018. On accurate evaluation of
gans for language generation. arXiv preprint arXiv:1806.04936.

[39] Elior Sulem, Omri Abend, and Ari Rappoport. 2018. Bleu is not suitable for the evaluation of
text simplification. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 738–744.

[40] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112.

[41] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduction. MIT
press.

[42] Guy Tevet, Gavriel Habib, Vered Shwartz, and Jonathan Berant. 2018. Evaluating text gans as
language models. arXiv preprint arXiv:1810.12686.

[43] Philip Thomas and Emma Brunskill. 2016. Data-efficient off-policy policy evaluation for
reinforcement learning. In International Conference on Machine Learning, pages 2139–2148.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008.

11

https://doi.org/10.18653/v1/D17-1238
https://doi.org/10.18653/v1/D17-1238


[45] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill,
Omer Levy, and Samuel Bowman. 2019. Superglue: A stickier benchmark for general-purpose
language understanding systems. In Advances in Neural Information Processing Systems, pages
3261–3275.

[46] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman.
2018. GLUE: A multi-task benchmark and analysis platform for natural language understanding.
In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pages 353–355, Brussels, Belgium. Association for Computational
Linguistics.

[47] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu,
and Nando de Freitas. 2016. Sample efficient actor-critic with experience replay.

[48] Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
2019. Neural text generation with unlikelihood training. arXiv preprint arXiv:1908.04319.

[49] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256.

[50] Ronald J Williams and David Zipser. 1989. A learning algorithm for continually running fully
recurrent neural networks. Neural computation, 1(2):270–280.

[51] Wonjin Yoon, Yoon Sun Yeo, Minbyul Jeong, Bong-Jun Yi, and Jaewoo Kang. 2020. Learning by
semantic similarity makes abstractive summarization better. arXiv preprint arXiv:2002.07767.

[52] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu SeqGAN. 2016. Sequence generative
adversarial nets with policy gradient. arxiv e-prints, page. arXiv preprint arXiv:1609.05473.

[53] Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner,
and Yejin Choi. 2019. Defending against neural fake news. In Advances in Neural Information
Processing Systems, pages 9051–9062.

[54] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter J Liu. 2019. Pegasus: Pre-training
with extracted gap-sentences for abstractive summarization. arXiv preprint arXiv:1912.08777.

[55] Shiyue Zhang and Mohit Bansal. 2019. Addressing semantic drift in question generation for
semi-supervised question answering. arXiv preprint arXiv:1909.06356.

[56] Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan Shen, and Lawrence Carin.
2017. Adversarial feature matching for text generation. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 4006–4015. JMLR. org.

[57] Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan, Hangbo Bao, and Ming Zhou. 2017. Neural
question generation from text: A preliminary study. In National CCF Conference on Natural
Language Processing and Chinese Computing, pages 662–671. Springer.

[58] Wangchunshu Zhou, Tao Ge, Ke Xu, Furu Wei, and Ming Zhou. 2020. Self-adversarial learning
with comparative discrimination for text generation. In International Conference on Learning
Representations.

[59] Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, and Yong Yu. 2018.
Texygen: A benchmarking platform for text generation models. In The 41st International ACM
SIGIR Conference on Research & Development in Information Retrieval, pages 1097–1100.

[60] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. 2019. Fine-tuning language models from human preferences.
arXiv preprint arXiv:1909.08593.

12

https://doi.org/10.18653/v1/W18-5446
https://openreview.net/forum?id=B1l8L6EtDS
https://openreview.net/forum?id=B1l8L6EtDS

	Introduction
	Related Work
	Discriminators and Generators Interaction
	Generating and discriminating as text to text tasks
	Discriminator-Generator Equilibrium

	Models
	Experiments
	Unconditional Language Generation
	Conditional Language Generation

	Conclusion

