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Abstract

Neural architectures based on self-attention,
such as Transformers, recently attracted inter-
est from the research community, and obtained
significant improvements over the state of the
art in several tasks. We explore how Trans-
formers can be adapted to the task of Neu-
ral Question Generation without constraining
the model to focus on a specific answer pas-
sage. We study the effect of several strategies
to deal with out-of-vocabulary words such as
copy mechanisms, placeholders, and contex-
tual word embeddings.

We report improvements obtained over the
state-of-the-art on the SQuAD dataset accord-
ing to automated metrics (BLEU, ROUGE), as
well as qualitative human assessments of the
system outputs.

1 Introduction

The Machine Reading Comprehension (MRC)
community focuses on the development of mod-
els and algorithms allowing machines to correctly
represent the meaning imbued in natural sen-
tences, in order to perform useful and valuable
high-level downstream tasks such as providing an-
swers to questions, generate summaries, and gen-
erate relevant questions given a piece of text. Per-
formance on those downstream tasks is indicative
of the extent to which the different proposed archi-
tectures are able to capture meaning from natural
language input.

Recently, neural architectures based on self-
attention have obtained significant improvements
over the state of the art in several tasks such as
language modelling and machine translation, for
which abundant data is available. Yet, they have
not been thoroughly evaluated on problems for
which relatively scarcer datasets are available. We
thus investigate the application of Transformers to
the task of Neural Question Generation (NQG):

given a text snippet, the model is called to gen-
erate relevant and meaningful questions about it.

Question Generation (QG) is an active field of
research within the context of machine reading.
it matches human behavior when assessing com-
prehension on a given topic: an expert is able to
ask the relevant questions to others to assess their
competences. Its potential applications cover a
broad range of scenarios, such as Information Re-
trieval, chat-bots, AI-supported learning technolo-
gies. Furthermore, it can be used as a strategy for
data augmentation in the context of Question An-
swering systems.

The QG task has been originally tackled using
rule-based systems (Rus et al., 2010), with the re-
search community turning to neural approaches
in recent years. In its most popular declination,
the task is answer-aware, i.e. the target answer
within the source text is known and given as in-
put to the QG model (Zhou et al., 2017). Under
this scenario, Song et al. (2017) proposed a gener-
ative model, jointly trained for question generation
and answering. More recently, Zhao et al. (2018)
obtained state-of-the-art results using a gated self-
attention encoder and a maxout pointer decoder.
All these works employ the SQuAD (Rajpurkar
et al., 2016) Question Answering dataset, thus di-
rectly leveraging the provided answer spans. Con-
versely, the answer-agnostic scenario lifts the con-
straint of knowing the target answers before gen-
erating the questions; Du et al. (2017) proposed an
end-to-end sequence to sequence approach, based
on a RNN encoder-decoder architecture with a
global attention mechanism.

While casting NQG as answer-aware is cer-
tainly relevant and useful (for instance, as a
data-augmentation strategy for question answer-
ing data), the ability of generating questions with-
out such constraint is very attractive. Indeed, re-
moving the dependency on an answer-selection
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component allows to reduce the bias towards
named entities, thus increasing the model’s de-
grees of freedom. This makes the task more chal-
lenging, but potentially more useful for certain ap-
plications – e.g. those requiring a natural interac-
tion with a final user. In this work we follow the
task as originally defined by Du et al. (2017): we
avoid constraining the generation based on a spe-
cific answer, effectively operating in an end-to-end
answer-agnostic scenario.

To adapt Transformers to the NQG task, we
complement the base architecture with a copy-
ing mechanism, placeholders, and contextual word
embeddings: those mechanisms are useful for the
treatment of out-of-vocabulary words, which are
more likely to affect performance in data-scarce
tasks. We study the effect of each of those mech-
anisms on architectures based on self-attention,
reporting improvements over the state-of-the-art
systems.

2 Architecture

Neural sequence-to-sequence models often rely on
Encoder-Decoder architectures: indeed, Recurrent
Neural Networks (RNNs) have consistently pro-
vided state-of-the-art results for Natural Language
Processing tasks such as summarization (Chopra
et al., 2016) and translation (Sutskever et al.,
2014). Drawbacks of RNN models include the
inherent obstacles to parallelism and the conse-
quent computational cost as well as the difficul-
ties in handling long-range dependencies. The
recently proposed Transformer model (Vaswani
et al., 2017) has proved to be very effective on
several tasks (Devlin et al., 2018; Radford et al.,
2018), overcoming such issues by not relying on
any recurrent gate: it can be briefly described as a
sequence-to-sequence model with a symmetric en-
coder and decoder based on a self-attention mech-
anism. For an exhaustive description, we refer the
reader to (Vaswani et al., 2017) or high-quality
blog posts (e.g. “The annotated Transformer”1).

Implementation-wise, we used a smaller archi-
tecture, with the following hyper-parameters: N
= 2 (number of blocks), d model = 256 (hid-
den state dimension), d ff = 512 (position-wise
feed-forward networks dimension), h = 2 (num-
ber of attention heads). Experiments run with the
original hyper-parameters as proposed by Vaswani

1http://nlp.seas.harvard.edu/2018/04/
03/attention.html

et al. (2017)2 obtained consistent and numerically
similar results. Throughout our experiments, we
used the spaCy 2.0 library3 for Named Entity
Recognition (NER), Part-of-Speech (POS) tag-
ging, and tokenization.

3 Experiments

In a preliminary experiment, we observed poor
performances when applying a Vanilla Trans-
former architecture to the NQG task: we thus
investigate how several mechanisms can be ex-
ploited within a Transformer architecture and how
they affect the performances on the task. In the
following, we describe and evaluate the benefits
of augmenting the base Transformer architecture
with:

• a copying mechanism;

• a placeholding strategy;

• and, contextualized word embeddings.

3.1 Data

We resort to the widely used Stanford Question
Answering Dataset (SQuAD) (Rajpurkar et al.,
2016): it contains roughly 100,000 questions
posed by crowd-workers on selected Wikipedia ar-
ticles; each question is associated with the cor-
responding answer, and with the reading passage
(the context) that contains it. In our experiments,
we only use the question-context pairs.

We evaluate performances through the com-
monly used BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004), and compare with the cur-
rent state-of-the-art answer-agnostic NQG model
described in (Du et al., 2017), considering the
question context at sentence-level and using ex-
actly the same splits provided by the authors4.

3.2 Context-free Word Representations

To deal with rare/unseen words, the Trans-
former (Vaswani et al., 2017) architecture lever-
ages large amounts of data and sub-word tokeniza-
tion; in Table 1 we show how the performance ob-
tained with a Vanilla Transformer is not satisfac-
tory on the NQG task.

2N=6, d model=512, d ff=2048, h=8.
3http://spacy.io
4https://github.com/xinyadu/nqg/tree/

master/data/raw

http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://spacy.io
https://github.com/xinyadu/nqg/tree/master/data/raw
https://github.com/xinyadu/nqg/tree/master/data/raw
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BLEU1 BLEU2 BLEU3 BLEU4 ROUGE-L copy%
Vanilla Transformer 36.13 17.77 10.04 6.04 33.17 4.2
Transformer base 38.74 20.54 12.26 7.66 35.69 5.7
+Copying 39.81 22.47 14.25 9.32 37.28 9.1
+ELMO 40.44 23.87 15.74 10.62 38.32 6.5
+Copying+ELMO 41.72 25.07 16.77 11.58 39.22 10.4
+Placeholding 41.54 25.52 17.56 12.49 39.26 48.4
+Placeholding+ELMO 42.2 26.2 18.14 12.92 40.23 49.4
+Placeholding+Copying 42.72 26.52 18.28 13.0 39.63 50.9
+Placeholding+Copying+ELMO 43.33 26.27 18.32 13.23 40.22 51.7
Du et al. (2017) 43.09 25.96 17.50 12.28 39.75 -

Table 1: Comparison with SOTA; the last column reports the percentage of OOV/placeholders tokens propagated
correctly (according to the ground truth) from the source contexts to the generated questions. To assess model
stability, we independently trained 10 models with our best architecture, and computed the standard deviation of
their BLUE4 performances on the test set: std < 0.009.

We hypothesize that this is a consequence of
the relatively small size of the task-specific data.
Therefore, in our experiments, we use word-level
tokenization and GloVe (Pennington et al., 2014)
as context-free pre-trained word vectors5.

Further, consistently with (Chen and Manning,
2014; Zhou et al., 2017), we augment the word
representation using learned POS embeddings.

The Transformer base architecture, upon which
all subsequent models are built, uses word-level
tokenization and pre-trained GloVe embeddings
instead of sub-word tokenization as in the Vanilla
Transformer.

3.3 Placeholding Strategy

One method to help the model deal with
rare/unseen words is to replace specific tokens
with fixed placeholder keywords. Such mecha-
nism is often used in industry-grade Neural Ma-
chine Translation systems (Crego et al., 2016;
Levin et al., 2017), to enforce the copy of named
entities from the source to the target language.

Recognizing that named entities are also likely
to be among rare/unseen tokens, we resort to such
strategy and replace them with fixed tokens: all to-
kens in the context that are marked as named entity
by the NER model are replaced with a token indi-
cating their entity type and order of appearance,
with the mapping kept in memory.

For instance, “Nikola Tesla was born in
1856.” becomes “Person 1 Person 2 was born in
Date 1”. At training time, the same procedure is

5http://nlp.stanford.edu/data/glove.
840B.300d.zip

applied to the target questions; at inference time,
the placeholders are replaced by the correspond-
ing named entities as a post-processing step. This
means that a different, randomly initialized, learn-
able vector is used as embedding for each place-
holder, in place of the GloVe representation corre-
sponding to the original token (or to OOV).

As shown in Table 1, this mechanism alone al-
lows the Transformer base architecture to achieve
state-of-the-art results. Further, it provides the
biggest relative improvement wrt the base archi-
tecture. This can be explained by the nature of
the SQuAD dataset, in which more than 50%
of the answers are named entities (see Table 2
in Rajpurkar et al. (2016)), consistently with the
percentage of tokens copied by the placeholding
mechanism alone. Moreover, placeholding allows
for a significant reduction of the vocabulary size
(∼30%).

Nonetheless, a strong limitation of placeholding
lies in its full dependency on the NER tagger: if
the latter fails to recognize an entity, placeholding
has no effect – which is especially damaging when
a word was not frequent enough to be included in
the vocabulary.

3.4 Copying Mechanism

As the questions generated from a given context
usually tend to refer to specific phrasing or enti-
ties appearing therein, Gulcehre et al. (2016) pro-
pose using a pointing mechanism (called pointer-
softmax) to select words to be copied from the
source sentence; intuitively, such method is of par-
ticular use in the case of rare or unknown words.

http://nlp.stanford.edu/data/glove.840B.300d.zip
http://nlp.stanford.edu/data/glove.840B.300d.zip
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Correctness Fluency Soundness Answerability Relevance
Transformer base 4.49 4.02 3.33 1.7 2.51
+Placeholding+Copying+ELMO 4.5 4.12 3.78 2.87** 3.59*
Du et al. (2017) 4.53 4.15 3.64 2.45 3.27

Table 2: Human assessment: two-tailed t-test results are reported for our best method compared to Du et al. (2017)
(∗ : p < 0.05, ∗∗ : p < 0.005).

The generation probability pgen ∈ [0, 1] at time-
step t is calculated as:

pgen = σ(W · (h∗ ⊕ st ⊕ xt))

where W is a learnable parameter vector, h∗

represents the context and is computed through
attention (i.e. as a linear combination of the fi-
nal encoder representations [h1, . . . , ht]), st is the
decoder state, and xt the decoder input. We
tested several attention mechanisms to enable the
copying, including global attention (Luong et al.,
2015); since no significant differences were ob-
served, for our experiments we used the raw atten-
tion scores of the Transformer, thus avoiding the
addition of more trainable parameters.

The results reported in Table 1 show how the ad-
dition of copying benefits the model performance,
and particularly how it allows the amount of to-
kens copied to increase, complementing the place-
holding mechanisms when the named entities are
not correctly recognized. The following example
from SQuAD exemplifies the contribution of the
copying mechanism: given the context “Beyoncé
attended St. Mary’s elementary school in Freder-
icksburg, Texas, where [...]”, for which the NER
fails to mark Beyoncé as named entity (moreover,
Beyoncé is not in the vocabulary) the Transformer
+ placeholding produces where did madonna at-
tend st. mary ’s school ?, while the addition of
copying allows to correctly recover the correct en-
tity and allows the model to emit a correct ques-
tion: where did beyoncé attend school ?

3.5 Contextualized Embeddings

Contextualized representation approaches allow to
compute the embedding of a given token depend-
ing on the context it appears in, as opposed to
the fixed, context-free vectors provided by GloVe,
therefore allowing to capture more information
for OOV tokens. The placeholding strategy de-
scribed above has the downside of depriving the
input text representation of any semantic informa-
tion besides the entity type. For instance, two enti-

Figure 1: Percentage of OOV tokens copied by the dif-
ferent mechanisms and combinations thereof, over all
OOV tokens copied.

ties such as Tesla and Edison could have close rep-
resentations in the word embedding space, within
a scientific-related subset of tokens: the use of a
placeholder would thus prevent the use of such in-
formation. Therefore, we concatenate the context-
free vectors (see 3.2) for a specific token with the
corresponding ELMO (Peters et al., 2018) repre-
sentation at the encoding stage. In our experi-
ments, those are only used in the encoding stage
since they can only have a meaning when applied
to full sentences.

Combined with the previously described mech-
anism, contextualized embeddings allow to further
improve the performances, obtaining a BLEU4
score of 13.23, almost one absolute point above
the current state-of-the-art in the answer-agnostic
task. As depicted in Figure 1, they also contribute
to the selection of relevant OOV tokens to copy
from the context to the generated question.

4 Human Assessment

Finally, we proceeded to a qualitative evaluation of
the generated outputs, by randomly sampling 100
context-question pairs from the test set. Three pro-
fessional English speakers were asked to evaluate,
the questions generated by: a) Transformer base,
b) our best performing model, and c) the state-of-
the-art model by Du et al. (2017)6.

6To reproduce the outputs of Du et al. (2017) we used the
code from https://github.com/xinyadu/nqg.

https://github.com/xinyadu/nqg
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The questions generated by the different mod-
els were shuffled before the assessment. Ratings
were collected on a 1-to-5 likert scale, to measure
to what extent the generated questions were:

• answerable, by looking at their context (An-
swerability);

• relevant to their context (Relevance);

• grammatically correct (Correctness);

• semantically sound (Soundness);

• and, well-posed and natural (Fluency).

As shown in Table 2, this analysis indicates a
qualitative improvement over SOTA in terms of
Relevance and Answerability.

Below, we report a few sample outputs, ran-
domly selected, generated by the proposed model.

5 Conclusions and Future Work

We have described a preliminary study on the
adaptation of Transformer architectures to Neu-
ral Question Generation. The results obtained
show the contribution of auxiliary techniques such
as copying mechanism, placeholding, and con-
textualized embeddings, which complement each
other. The best performance is obtained when us-
ing the three mechanisms altogether, reaching an
improvement of almost one BLEU4 point (and of
0.5 for ROUGE-L) over the current state-of-the-art
approaches. Furthermore, a qualitative assessment
indicated improvements in terms of Relevance and
Answerability.

We are extending the proposed approach to
other QA datasets, and adapting it to use pre-
trained language models such as BERT (Devlin
et al., 2018), to evaluate the consistency of the
mechanisms introduced.

Sentence 1: Under Rockne, the Irish would post
a record of 105 wins, 12 losses, and five ties.
Human: What was the amount of wins Knute
Rockne attained at Notre Dame while head
coach?
Ours: how many losses did the irish have ?

Sentence 2: Chopin was of slight build, and even
in early childhood was prone to illnesses.
Human: What was Frédéric prone to during
early childhood as a result of his slight build?
Ours: what type of disease did chopin have ?

Sentence 3: Montana contains thousands of
named rivers and creeks, 450 miles (720 km) of
which are known for ”blue-ribbon” trout fishing.
Human: How many miles of rivers are known
for high class trout?
Ours: how many miles of rivers does montana
contain ?

Sentence 4: In 1648 before the term genocide
had been coined, the Peace of Westphalia was es-
tablished to protect ethnic, national, racial and in
some instances religious groups.
Human: What year was the Peace of Westphalia
signed?
Ours: when was the peace of westphalia estab-
lished ?

Sentence 5: A bactericidal activity of antibacte-
rials may depend on the bacterial growth phase,
and it often requires ongoing metabolic activity
and division of bacterial cells.
Human: What besides ongoing metabolic activ-
ity is required in bactericidal activity?
Ours: what type of activity do antibacterials de-
pend on ?

Sentence 6: The Montana Act led to the arrest
of over 200 individuals and the conviction of 78,
mostly of German or Austrian descent.
Human: How many people were arrested from
the Montana Act?
Ours: how many individuals were killed in the
montana act ?
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