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Abstract

We address the problem of modeling multiple simultaneous time series where the obser-
vations are correlated not only inside each series, but among the different series. This
problem happens in many domains such as ecology, meteorology, etc. We propose a new
dynamical state space model, based on representation learning, for modeling the evolution
of such series. The joint relational and temporal dynamics of the series are modeled as
Gaussian distributions in a latent space. A decoder maps the latent representations to the
observations. The two components (dynamic model and decoder) are jointly trained. Using
stochastic representations allows us to model the uncertainty inherent to observations and
to predict unobserved values together with a confidence in the prediction.

1. Introduction

Relational time series, i.e. multiple time series where the observations are correlated both
inside each series and between series occur in many domains such as ecology, medicine,
biology, earth observation by satellite imagery or local measurements, multimedia or even
social data analysis. The correlations between the different observed series can come from
a proximity (e.g. earth observation or epidemic diffusion) or from a similarity of behavior
(e.g. user traces in social data). In the statistical literature, the modeling of relational
time series has been the topic of a dedicated field: spatio-temporal statistics (Cressie and
Wikle (2011); Wikle and Hooten (2010)). Different methodologies have been developed for
handling a large variety of spatio-temporal phenomena, with an emphasis on the analysis
of natural observations like weather prediction, ecology or remote sensing. In the machine
learning domain, there exists a vast literature dedicated to sequence or time series predic-
tion. Recently, deep recurrent neural networks have witnessed notable successes in different
sequence and time series modeling tasks leading to an increasing number of publications,
e.g. (Barbounis et al. (2006); Hsieh et al. (2011); Cao et al. (2012); Hermans and Schrauwen
(2013)). Despite a large number of recent developments, the modeling and analysis of rela-
tional time series has only attracted a few attention in the field of representation learning.
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In addition, most of the models are deterministic in the sense that they are trained to learn
a fixed mapping for modeling the dynamics of the series.

We propose a new state space model for relational time series able to model the uncer-
tainty at the observation and at the modeling levels. The principle of this approach is to
associate each point of a time series to a Gaussian distribution in a latent space, the dis-
tribution over the observed values being directly computed from these latent distributions.
The model has two main components. One is responsible for the dynamics in the latent
space. This component is thus modeling the evolution of the Gaussian considering both
the temporal intra-series and the relational inter-series dependencies. A second component
acts as a decoder and maps the latent representations associated with each series to the
corresponding observations in the output space.

The contributions of the paper are thus: (i) a new dynamical model for relational time
series inspired by representation learning; (ii) a stochastic component for modeling the
uncertainties at the observation and dynamic levels

The paper is organized as follows. In Section 2 we introduce some related work on
forecasting in time series, representation learning for time series, and recent deep learning
works focusing on modeling uncertainty. The model is presented in Section 3 together with
four different variants. Section 4 presents experimental results on four datasets, and section
5 concludes this work and gives some perspectives.

2. Related Work

The classical topic of time series modeling and forecasting has given rise to an extensive lit-
erature. In statistics, classical linear models include many variations around auto-regressive
and moving average models (De Gooijer and Hyndman (2006)). In machine learning, non
linear extensions of these models based on neural networks have been proposed as early as
the 90s, opening the way to many other non linear models including kernel methods (Muller
et al. (99)).

Relational time series have mainly been studied in the field of spatio-temporal statistics
(Cressie and Wikle (2011); Wikle and Hooten (2010)). The traditional method first relied on
a descriptive approach using the first and second-order moments of the process for modeling
the spatio-temporal dependencies. More recently, dynamical state models, where the current
state is conditioned on the past have been explored (Wikle (2015)). These models have
been considered both for continuous/discrete space and time components. However, the
most common way is to consider discrete time, leading to the modeling of time series of
spatial processes as we do here. When space is discrete, the model comes down to a general
vectorial autoregressive formulation. These models face a curse of dimensionality in the
case of a large number of sources. Different strategies have been adopted to solve this
problem such as embedding the spatio-temporal process in a low-dimensional manifold or
parameter reduction (Wikle (2015)), leading to model families quite similar to the ones
used in machine learning for modeling dynamical phenomena. Also, for complex underlying
processes, observations only provide an incomplete description of the process dynamics so
that modeling uncertainty at the data and model levels is an important topic.

In the last 10 years, there has been a growing interest in learning latent representations
for example through neural networks and deep learning. Dynamical state space models
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such as recurrent neural networks (RNN), which have been used for time series forecasting
in different contexts since the early nineties (Connor et al. (1994)), have recently witnessed
important successes in different areas for general sequence modeling problems, leading to
breakthroughs in domains like speech (Graves et al. (2013)), language generation (Sutskever
et al. (2011)), translation (Cho et al. (2014)), and many others. Among this family, the
model closest to ours is the dynamic factor graph model of (Mirowski and LeCun (2009))
designed for multiple series modeling for the tasks of forecasting and imputation. However
this model does not consider relational dependencies which is the focus of our approach.

Most of the above models make use of pointwise representations and do not model ex-
plicitly the uncertainties present in the process and/or in the observations. Recently, in the
learning representation community, there has been a growing interest in using distributions
as latent representations instead of points. (Vilnis and McCallum (2015); He et al. (2015);
Dos Santos et al. (2016)) all make use of Gaussian distributions for representing differ-
ent items like words (Vilnis and McCallum (2015)), nodes in knowledge graphs (He et al.
(2015)) or nodes in graphs for transductive classification (Dos Santos et al. (2016)). Note
that Gaussian processes have also been used for time series prediction, but they have mainly
been considered for univariate time series prediction (Hachino and Kadirkamanathan (2011);
Brahim-Belhouari and Bermak (2004)) and they do not use a state space formulation.

Recent techniques in variational inference (Kingma and Welling (2014); Rezende et al.
(2014)) deal with uncertainty by modeling distributions in the observation space, mapping
random variables within a latent space to observations with a deep neural network. Exten-
sion of the variational inference method to time series has been proposed (Fraccaro et al.
(2016); Krishnan et al. (2015)) but contrarily to those works, we take into account relation-
ships (both temporal and relational). Furthermore, in our model, we work directly with
random variables to predict observations from time series. This gives us direct access to
the output distribution with no need to sample or work with intractable distributions.

Our model is built on top of the model in (Ziat et al. (2016)) which proposes a determin-
istic dynamical process model but does not consider any explicit modeling of uncertainty.
In this paper, we propose a model that uses Gaussian embeddings, and extend the dynamics
and loss functions of the model in (Ziat et al. (2016)).

3. Forecasting of Relational Time Series

3.1 Notations and Tasks

Let us consider a set of n temporal sequences1 x1, ..,xn such that x
(t)
i ∈ R is the value of

the ith sequence at time t defined by xi = (x
(1)
i , .., x

(T )
i ), T being the number of observed

time steps. For simplification, we consider that all the series have the same length, but this
is not restrictive.

We model the dependencies between the different series through a graph, the different
series sources being the graph vertices and the links modeling explicit dependencies between
the sources. These links can reflect a spatial proximity between the sources of the series,
a similarity of behavior between users or any other predefined relation. These explicit

1. For simplicity, we consider univariate time series, but the model can be trivially extended to multivariate
time series.
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relations will be modeled in the latent space. Our hypothesis is that they will constrain
the representation of linked sources to be similar one to another in the latent space, this
similarity being controlled by the strength of the link between the two time series, denoted
ei,j . We assume that the graph structure is static in time and is provided as a prior
information. The model can be extended to learn these static dependencies but this is not
considered here.

Let us denote τ the size of the prediction horizon. The forecasting problem considered

here is to compute for all series i the values x
(T+k)
i for all k in [1; τ ]. Note that the model can

be straightforwardly extended to the imputation problem that aims at predicting missing
values.

3.2 Informal description

The proposed model is a dynamic state space model: the dynamics is modeled in a contin-
uous latent state space and the observations are generated from states in this latent space.
State space models have already been considered for multiple time series (e.g. Mirowski
and LeCun (2009)) and for spatio-temporal processes (e.g. Wikle and Hooten (2010)).

Both the observations and the dynamics are subject to uncertainties. Usually, the
observations correspond to a partial view of the underlying generating process and the
dynamics being hidden is not directly accessible and should be modeled as a stochastic
process.

To handle this uncertainty, we propose a model, namely Relational Dynamic model
with Gaussian representations (RDG), that represents latent factors as distributions in a
latent space and learns the series dynamics in this latent space. The distributions themselves
are estimated using observations like for any other representation learning model. Besides
being more adapted to handling the noise inherent to the process and to the observations,
the model can be used to predict the posterior distribution of the variables associated to
the series and in particular the confidence or variance associated to the predictions.

The model is an extension of the deterministic model of (Ziat et al. (2016)) and has two
main components: (i) Decoding component: we consider that each series corresponds

to a particular trajectory in an unknown latent space. Each series x
(1)
i , ...., x

(T )
i is thus

associated to a series of random variables in Rd denoted Z
(1)
i , ...., Z

(T )
i , Z

(t)
i being the latent

factor explaining the observed value of the series i at time t and d the size of the latent space.

We model each Z
(t)
i as a multivariate normal variable N (µ

(t)
i ,Σ

(t)
i ). The observation can be

computed from this latent distribution by using a decoding function mapping Z
(t)
i to X

(t)
i =

f(Z
(t)
i ). (ii) Dynamic Model: The second component models the series dynamics in the

latent space. We suppose that dynamics can be captured for all series through a function

h that maps the latent random variable Z
(t)
i to the next latent variable Z

(t+1)
i = h(Z

(t)
i ).

The function h is thus modeling the time dynamics. In addition, constraints are introduced
to reflect prior knowledge about the relational dependency structure of the series. For
any couple of series i and j with a known dependency, i.e. such that ei,j > 0 we add a

corresponding constraint on Z
(t)
i and Z

(t)
j as explained in Section 3.3.3.
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In the following, we explain how the distributions corresponding to the random vari-

ables Z
(t)
i are learned, jointly to the functions f (decoder component) and h (dynamic

component).

3.3 Model Definition

We suppose that the random variables Z
(t)
i follow a Gaussian distribution. Let us denote

Z
(t)
i ∼ N (µ

(t)
i ,Σ

(t)
i ) a distribution where µ

(t)
i and Σ

(t)
i have to be estimated from known

observations. For simplicity, we consider in the following that Σ
(t)
i is a diagonal matrix,

with σ
(t)
i,j denoting the jth value of the diagonal of Σ

(t)
i .

We define a global loss function L(µ,Σ, f, h) where µ and Σ are the means and covari-
ance matrices for all the series and for all the time steps between 1 and T . The loss is a
sum of three terms: (i) a decoding loss ∆De, (ii) a dynamical loss ∆Dy and (iii) a structural
loss ∆R:

L(µ,Σ, f, h) =

n∑
i=1

T∑
t=1

∆De(f(Z
(t)
i ), x

(t)
i ) + λDy

n∑
i=1

T−1∑
t=1

∆Dy(Z
(t+1)
i , h(Z

(t)
i ))

+ λR

n∑
j=1

T∑
t=1

ei,j∆R(Z
(t)
i , Z

(t)
j ) (1)

where λDy and λR are hyperparameters weighting the importance of the different elements
in the loss function. The first term corresponds to the decoding model, and forces both f
and the learned distributions of variables Z to “explain” the observations, the second term,
the dynamic model, encourages h to model the time dynamics in the latent space, while the
third term captures the relations between the pairs of series. In the following, we use for f
a linear function and h will be either a linear or non-linear function (see Section 3.3.2).

Learning: Learning the model is performed through the minimization of the loss function
L(µ,Σ, f, h) with respect to µ, Σ, f and h. To simplify the notations, the parameters of f
and h are not made explicit in the notations – f and h are supposed to be differentiable.
At the end of the learning process, all the latent distributions for each of the time steps are
known for the training data, as well as the decoding function f and the dynamical one h.
We used ADAM (Kingma and Ba (2015)) as a stochastic gradient descent technique. This
optimization can be easily made on a large scale dataset, and/or by using GPUs.

3.3.1 From Latent Space to Observations

The mapping onto the latent space is learned so that the values x
(t)
i of each series can be

predicted from their respective Gaussian embedding Z
(t)
i through the f function. We define

below two alternative decoding loss functions ∆De, used in the experiments for measuring

the error between the predicted distribution f(Z
(t)
i ) and the observation x

(t)
i . Other losses

could be used with the same model.
The first loss measures the difference between the expected value of f and the obser-

vation using a mean-square error:

∆De1(f(Z
(t)
i ), x

(t)
i )

def
=
(
E
[
f(Z

(t)
i )
]
− x(t)i

)2
(2)
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When considering a linear decoding function such as f(·) =< θ, · > , θ being the set of
parameters of f , ∆De1 can be rewritten as as:

∆De1(f(Z
(t)
i ), x

(t)
i ) = (< θ, µ

(t)
i > −x(t)i )2 (3)

The second loss aims at measuring the distance between the random variable modeling
the predicted observations and the observations. This is the expectation of the mean squared
error between the predictions and the observations:

∆De2(f(Z
(t)
i ), x

(t)
i )

def
= E

[
(f(Z

(t)
i )− x(t)i )2

]
(4)

When f is a linear function, this loss can be written as:

∆De2(f(Z
(t)
i ), x

(t)
i ) =

d∑
k=1

θ2kσ
(t)
i,k +

(
< θ, µ

(t)
i > −x(t)i

)2
(5)

Minimizing ∆De1 only updates the mean of the distributions, whereas minimizing ∆De2

updates both the mean and the variance. More specifically, an observed value with ∆De2

will pull the variances σ
(t)
i down. This is an interesting property since observing values

should reduce the variance of the representation. Moreover, this effect will be higher for the
dimensions of the latent space where the value of θ is higher. This is sensible since variance
is reduced for the dimensions that are important for the prediction.

3.3.2 Modeling Dynamics

The loss function ∆Dy aims at finding values Z
(.)
i and a dynamic model h, that will be

used to predict the representation of the next state of time series i, Z
(t+1)
i . The function

h maps a distribution N (µ
(t)
i ,Σ

(t)
i ) to N (µ

(t+1)
i ,Σ

(t+1)
i ). Based on (Vilnis and McCallum

(2015); Dos Santos et al. (2016)), we use a Kullback-Leibler divergence (noted DKL(·||·))
to compare the distribution at (t+ 1) to the distribution predicted by h.

We propose in the following two alternative functions for h. For the first one, we
consider that the latent representation at time (t+1) is a linear transformation of the latent
distribution at time t. The transformed variable is also a Gaussian and its parameters can
be easily computed. In this case, h is a linear function from Rd to Rd which is represented
by a matrix γ ∈Md,d(R):

∆Dy1
(Z

(t+1)
i , h(Z

(t)
i ))

def
= DKL(Z

(t+1)
i ||γZ(t)

i ) = DKL(Z
(t+1)
i ||N (γµ

(t)
i , γΣ

(t)
i γT )) (6)

Linear transformations of random vectors might be too restrictive to model complex
processes. As an alternative transformation, we used two non linear multilayer perceptrons
(MLP), one hm for predicting the means and one for hc for predicting the variance: the next

mean is given by µ
(t+1)
i = hm(µ

(t)
i ,Σ

(t)
i ), and the next variance by Σ

(t+1)
i = hc(µ

(t)
i ,Σ

(t)
i ).

This gives:

∆Dy2
(Z

(t+1)
i , h(Z

(t)
i ))

def
= DKL(Z

(t+1)
i ||N (hm(µ

(t)
i ,Σ

(t)
i ), hc(µ

(t)
i ,Σ

(t)
i ))) (7)
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Note hat in the second case, we also make the hypothesis that the resulting distribution

(for Z
(t+1)
i ) is Gaussian. In the two cases, the KL divergence between the two Gaussian

distributions has a simple analytic form from which the gradient can be easily computed2.

3.3.3 Structural regularization term

At last, ∆R corresponds to a structural regularization over the graph structure that
encourages the model to learn similar representations for time series that are interdepen-
dent. This forces the model to learn representations that reflect the structure dependencies
between the series. Recall that these dependencies are supposed to be provided as priors
for this model. We define this regularization loss as:

∆R(Z
(t)
i ||Z

(t)
j ) = DKL(Z

(t)
i ||Z

(t)
j ) (8)

which again has, for Gaussian random variables, a simple analytical form that can be used
for learning.

3.4 Inference

During inference when forecasting values, the latent distributions at (T + 1) are deduced

from the ones at time T and follow N (h(µ
(T )
i ,Σ

(T )
i )), distributions at (T+2) follow a normal

distribution N (h ◦ h(µ
(T )
i ,Σ

(T )
i )), etc.

4. Experiments

4.1 Datasets and baselines

Experiments have been performed on four datasets respectively extracted from Google Flu
Trends3, WHO4 and from two datasets from Grand Lyon5 (GL) (respectively data from
traffic conditions and from car parks occupancy). All the series are normalized. For all
datasets, we used binary dependency relations indicating whether two series are related
or not. The Google Flu Trend (GFT) dataset is composed of an aggregation of weekly
Google search queries related to the flu in 29 countries. This dataset spans about ten years
of time. The binary relations between series are defined a priori so that the series of two
countries i and j are linked, i.e. ei,j = 1 in Equation (1), only if the countries have a com-
mon frontier. There are 96 relations in all. The GL Traffic (GL-T) dataset corresponds to
the traffic conditions of the 50 busiest roads of the city of Lyon (France). Data is aggregated
on 20 minutes windows spanning 15 days. The binary relations between series are based
on the geographical proximity of roads. There are 130 relations in total. The GL Park
(GL-P) dataset represents the occupancy of public car parks in Lyon. The series correspond
to the occupancy of the 30 busiest car parks. It has the same window and period of time as
the previous dataset, and the binary relations between series are based on the geographical

2. DKL(Z
(t)
i ||Z

(t)
j ) = 1

2
(tr(Σ

(t)
j

−1
Σ

(t)
i ) + (µ

(t)
j − µ

(t)
i )T Σ

(t)
j

−1
(µ

(t)
j − µ

(t)
i )− d− log(

|Σ(t)
i |

|Σ(t)
j |

))

3. http://www.google.org/flutrends
4. http://www.who.int
5. http://data.grandlyon.com
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(a) RMSE from T+1 to T+5 on GL-T.

Model GL-T GL-P GFT WHO
AR 0.0752 0.0892 0.0626 0.0832

FFNN 0.0751 0.0894 0.045 0.0838
RNN 0.0709 0.0890 0.0431 0.0795
KF 0.0711 0.0833 0.0388 0.0799

DFG 0.0712 0.0911 0.0592 0.0795
RDG1,1 0.0742 0.0902 0.0607 0.0848
RDG1,2 0.0707 0.0834 0.0434 0.0796
RDG2,1 0.0765 0.0896 0.0589 0.0831
RDG2,2 0.0718 0.0828 0.0429 0.0795

(b) RMSE at T+1 on the four datasets.

Figure 1: Quantitative comparison between baselines and our proposed model (RDG) on
the prediction task. RDGk,l corresponds to the variant with losses (∆Dek ,∆Dyl).

proximity of car parks. There are 74 relations in total. The WHO dataset provides the
number of deaths caused by diphtheria over 91 different countries, giving rise to 91 time
series. The binary relations between series are defined so that two series are linked if the
corresponding countries share a common frontier. There are 228 links in total.

We compare our approach with five baselines : Auto-Regressive (AR), a monovariate
linear auto-regressive model. It computes its predictions based on a learned linear function
of a fixed number p of past values of the series. The order p of the model is a hyperpa-
rameter of the model selected by a grid search. Feed Forward Neural Network (FFNN),
representative of non-linear auto-regressive models of order p where the non-linear function
is modeled as a feed-forward neural network with one hidden layer of size s. In this case,
p and s are hyperparameters selected by grid search. RNN, a recurrent neural network
with one hidden layer of size s of recurrent units and tanh non-linearities. The RNN model
is a state space non-linear auto-regressive model with exogenous inputs (the past values
of the series). Note that this model should in principle be able to learn the inter-series
dependencies, but the dependencies are not modeled explicitly as they are in our model.
Also the RNN does not introduce explicit modeling of uncertainties. KF (Kalman (1960)),
is a classic Kalman Filter with linear transformations from one state to another. DFG
(Mirowski and LeCun (2009)), a state of the art model that learns continuous deterministic
latent variables by modeling the dynamics and the joint probabilities between series. All
the hyperparameters of the baselines have been set using a validation set by grid search,
including the best architectures for the dynamic model h when it is a multi-layer perceptron
with one hidden layer or a linear model. .

For the evaluation we have considered a root-mean-square error (RMSE) criterion. Re-
garding the experimental protocol, models are evaluated using cross-validation with rolling
origin.
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Figure 2: Forecasts on GFT (two different time series of the dataset) with the RDG2,2

model showing its range of confidence: E(f(Z(t))) ± var(f(Z(t))). Prediction at 25 + n
corresponds to f(hn(Z(25)).

4.2 Results

Let us first present the performance of our model w.r.t. the baselines for prediction at
horizon 1 in Figure 1b We have tested the four variants of our approach i.e combinations of
∆De1 or ∆De2 with ∆Dy1

or ∆Dy2
. The proposed model obtains the best results on all the

datasets exept GFT where KF performs better. Otherwise it outperforms the baselines on
two datasets (GL-P -Grand Lyon Parks- and GFT -Google Flu Trends- on the table) and
gets results similar to the RNN on the two others (GL-T -Grand yon Traffic- and WHO).
The non linear dynamical model used for ∆Dy2

usually gets better results than other models,
the best combination being the use of the MSE expectation error for the decoder and the
non-linear model for the dynamics (denoted RDG2,2 on the figure).

Figure 1a shows the prediction quality (RMSE) at (T + 1), (T + 2), (T + 3), (T + 4) and
(T + 5) and illustrates the ability of RDG to predict correctly at different horizons. Here
again, the performance of RDG is very close to the performance of the Recurrent Neural
Network. One can remark that at (T + 5) KF does not goes the distance since it performs
well at (T + 1) but quite badly at (T + 5) in comparison to other baselines.

RDG has the additional property of modeling the uncertainty associated to its predic-
tions, which is not the case for a RNN. Let us consider the curves presented in Figure 2.
They illustrate, the predictions made by our model together with their associated variance
computed through the Gaussian embeddings. First, one can see that the ground truth
values are always within the confidence interval provided by our model, which means that
RDG computes relevant minimum and maximum possible values. Another aspect is that
the size of the interval increases with the prediction horizon, which is what is expected
from such a model. The latter is then able to predict relevant confidence values for its
predictions.
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5. Conclusion and future work

We have proposed a model for relational time series forecasting. Our model (RDG) is based
on latent Gaussian embeddings, and has shown competitive performance on four different
datasets compared to state-of-the-art models. Moreover, RDG allows us to model the
uncertainty of predictions, providing for example confidence intervals for each prediction.
Future work will investigate more complex dynamic and prediction functions, as well as
observing the behavior of the model for imputation tasks.
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